
  
04b Sample Examination Problems Chapter 8 

SOLUTIONS 

 

Although it looks like paired samples, it is not 
Since the sample sizes are different. 
 
We need the 90%  of XY μμ −  
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Private Y : 38600
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Assumption : The population variances are unknown(not given) 
              
             The population variances are equal. 
 
We use the pooled variance estimator: 
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The 90% C.I. , 050210 ./. =⇒= αα  , I will use XY −  instead of  
YX −  since Y  = 38600 > X = 323056.5 
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= 38600 – 32305.6 ±  (1.740)(13612.5)
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= 62944  10882.9 = (-4588.5 , 17177.3)  ±
 
That is we are 90% confident that XY μμ −  ∈(-4588.5 , 17177.3) 
Remark: Note that when 0 ∈ C.I. then we say at the 90%  
       confidence level , the population means are potentially 
       equal.   

 

H0 : XY μμ −  = 1000          again assuming = =2
xσ 2

yσ 2σ  

H1 : XY μμ −  > 1000          One tailed test (upper) 

The test statistics : 
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Since we were not given α  .we’ll use α  = 0.05  
The critical value from table 10 : 741t 517 ., =  
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It falls outside the rejection region and therefore we do Not 
Reject H0 i.e. there is no significant evidence that the 
difference between private and public sectors salaries exceeds 
1000.  
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The assumptions : 
-Normality : Normally distributed salaries in the private  
             and the public sectors  

             X  ~ N(
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-Independence :so we were able to use:       0 

 Var(Y - X )=Var(Y ) + Var( X ) -2Cov( X ,Y ) = 
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- Main assumption : = =2
xσ 2

yσ 2σ  and unknown. 
 

 

We need  99% C.I. for XY μμ −   

Control X : 5241
n

X
X

23

1i
i

.==
∑
=

−

 

                             08294XX
1n

1S 2
n

1i
i

2
X .)( =−

−
= ∑

=
1517SX .=⇒            

Special Y : 4851
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 nx = 23 ,  ny = 21   
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   We use the pooled variance estimator: 
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The 99% C.I. , 00502010 ./. =⇒= αα  , I will use XY −  instead of  
YX −  since Y  = 51.48 > X = 41.52 

yx
2nn2 n

1
n
1StXY yx +±− −+,/α    , 7042t 420050 .,. ≈  (using 40 df) 

= 51.48 – 41.52  (2.704)(14.55)±
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= 9.96 ±  11.96 = (-1.915 , 21.835)  
That is we are 99% confident that XY μμ −  ∈(-1.915 , 21.835) 
Remark:Note that when 0 ∈ C.I. then we say at the 99%  
       confidence level , the population means are potentially 
       equal. If you find the 90% C.I , the interval becomes  
       (2.56 , 17.36) which excludes 0 and we say: there is  
       a significant difference between the population means. 

 

H0 : XY μμ =            again assuming = =2
xσ 2

yσ 2σ  

H1 : XY μμ ≠            Two tailed test  

The test statistics : 

yx

XY

n
1

n
1S

XY

+

−−− )( μμ
 ~  2nn yxt −+

α =0.1 , α /2 = 0.05  
The critical value from table 10 : 6481t 542 ., =  
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It falls within the rejection region and therefore we  
Reject H0 i.e. there is significant difference between special 
and control scores. 
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