04b Sample Examination Problems Chapter 7 SOLUTIONS

 Why do we work out a confidence interval for the difference between the means of two populations rather than comparing the separate intervals for each population mean?

Assume that we have two sample means : \overline{x} and \overline{y} and we wish to determine whether or not $\mu_x - \mu_y = 0$ For simplicity assume that the variances are known and equal $\sigma_x^2 = \sigma_y^2 = \sigma^2$

Let's find separate 95% C.I. for each sample mean: The half width of each C.I. is $1.96 \frac{\sigma}{\sqrt{n}}$ the C.I. won't

overlap unless $\overline{x} - \overline{y} \succ 2\left(1.96\frac{\sigma}{\sqrt{n}}\right)$

<u>Remember</u>:We need the C.I. to not overlap so we can conclude that there is a real difference between the two groups.

If we have one C.I. then : $\bar{x} - \bar{y} \succ \sqrt{2} \left(1.96 \frac{\sigma}{\sqrt{n}} \right)$

Since $\sqrt{2}\left(1.96\frac{\sigma}{\sqrt{n}}\right) < 2\left(1.96\frac{\sigma}{\sqrt{n}}\right)$ then we achieve a significant difference for smaller differences between \overline{x} and \overline{y} , therefore using one C.I. is more powerful.

2. A random sample of 10 observations from a normal distribution with mean μ and variance σ^2 gives a sample mean of 1.2. An independent random sample of size 20 from the same population has sample variance 3.6. Find a 90% confidence interval for μ .

Sample1 : $n_1 = 10$, $\overline{x} = 1.2$, $s^2 = ?$ Sample1 : $n_2 = 20$, $s^2 = 3.6$, $\overline{x} = ?$ Both taken from the same Normal population N(μ, σ^2)

We need 90% C.I. for μ

 $\underline{\text{Remember}} \ \overline{X} \ \sim \ \mathrm{N}(\ \mu, \frac{\sigma^2}{\sqrt{n}} \) \ \text{and} \ \overline{X} \ \text{ is unbiased estimator of } \ \mu \\ \text{ i.e. } E(\overline{X}) = \mu$

The problem with this question is that we don't have $s^2 = ?$ For Sample1 and x = ? for sample2 so we need to estimate them.

The point estimate of 1.2 is an unbiased estimate of μ similarly We know that the sample variance s² is an unbiased estimator of σ^2 i.e. $E(s^2) = \sigma^2$

So we use $\bar{x} = 1.2$ and $s^2 = 3.6$

The other problem is to decide which Sample to use , As stated before the size of the sample affects the variance and therefore we would rather use Sample2 because as n increases the variance decreases.(less variability)

90% C.I. for μ : $(1-\alpha)100\% \Rightarrow \alpha = 0.1$ Here σ^2 is unknown and the sample size < 30 so we use :

$$\overline{x} \pm t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}} = \overline{x} \pm t_{0.05, 19} \frac{s}{\sqrt{n}}$$
, $t_{0.05, 19} = 1.729$ (Table 10)

=
$$1.2 \pm 1.729 \frac{\sqrt{3.6}}{\sqrt{20}}$$
 = 1.2 ± 0.7336 The C.I. = (0.4664 , 1.9336)

This means : we are 90% confident that μ is somewhere

between 0.4664 and 1.9336