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04b Sample Examination Problems Chapter 5 

SOLUTIONS 
 

 

   Population size N = 3 : A ,B ,C  
   n = 2 without replacement  
 
   Assuming order does not matter.(Combination) 
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    The proof is in the “Special Distributions” page 4. 
    Here is an easier proof : 
    We’ll use the fact that the binomial distribution is 
    the sum of n independent Bernoulli trials of success 
    probability π  
 
      X      0      1 
 
 

P(X=x)  1-π    π  
 
 
    We first find the mean and the variance of this single  
    Bernoulli trial and then we find the mean and the 
    Variance of the sum of n independent Bernoulli trials 
    Which is the same as mean and the variance of the 
    Binomial distribution: 
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    Var(X) = E(X2)- E2(X) = (02)(1-π )+(12)(π )- 2π  

           = π  - 2π = π (1-π ) 
 
 
    For the binomial distribution X1 ,X2 ,……, Xn   : 
      Independent n Bernoulli trials  
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