For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@uaemath.com</u>

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

International Institute for Technology and Management

Unit 76: Management Mathematics Handout #9
Calculus Applications
Taylor's ExpansionThe Taylor polynomial for the function $f(x)$ about $x=a$ is
$f(x) = f(a) + \frac{x-a}{l!}f'(a) + \frac{(x-a)^2}{2!}f''(a) + \frac{(x-a)^3}{3!}f'''(a) + \dots$
Maclaurin's Expansion
With a = 0, $f(x) = f(0) + \frac{x}{l!}f'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots$
Example: Expand $f(x) = Arctanx = tan^{-1}x$
$f(0) = \operatorname{Arctan} 0 = 0 \ ; \ f'(x) = \frac{l}{l+x^2} \Rightarrow f'(0) = 1 \ ; \ f''(x) = \frac{-2x}{(l+x^2)^2} \Rightarrow f''(0) = 0$
f'''(x) = -2, substituting all these in the Maclaurin's formula:
Arctanx = 0 + x(1) + $\frac{x^2}{2!}$ (0) + $\frac{x^3}{3!}$ (-2) = x - $\frac{x^3}{3}$ + $\frac{x^5}{5}$ - $\frac{x^7}{7}$ + Famous Expansions :
$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots; \sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} \dots$
$\cos x = 1 - \frac{a}{2!} + \frac{a}{4!} - \frac{a}{6!}$; $\ln(a+x) = \ln a + \frac{a}{a} - \frac{a}{2a^2} + \frac{a}{3a^3}$
Note that expansion of lnx is not possible by Maclaurin's since the derivatives of lnx at $x = 0$, do not exist : $f'(x) = 1/x$ then $f'(0) = 1/0$? However, the expansion of lnx about $x = a$ ($a \neq 0$) using Taylor's is possible :
lnx = lna + $\frac{l}{a}$ (x-a) - $\frac{l}{2a^2}$ (x-a) ² + $\frac{l}{3a^3}$ (x-a) ³ ; e.g. lnx about x = 1
$\ln x = \ln 1 + \frac{l}{l}(x-1) - \frac{l}{2}(x-1)^2 + \frac{l}{3}(x-1)^3 - \dots = (x-1) - \frac{l}{2}(x-1)^2 + \frac{l}{3}(x-1)^3 - \dots$

For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@uaemath.com</u>

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

Deducing Expansions Suppose we need the expansion of e^{-x} or e^{2x} or e^{-x^2} , we can do this using the expansion of e^x without doing any computation : we have : $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ to get the expansion of e^{-x} simply replace x by -x in $e^{-x} = 1 + ($ the expansion of e^x x) + $\frac{(-x)^2}{2!}$ + $\frac{(-x)^3}{3!}$ += 1 - x + $\frac{x^2}{2!}$ - $\frac{x^3}{3!}$ + Example: Find the expansion of $e^{\text{cosx-1}}$ up to the term $\bm{x^4}$,deduce the expansion of e^{cosx} ;we have $e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots$ and $\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} \dots \Rightarrow \cos x - 1 = -\frac{x^{2}}{2!} + \frac{x^{2}}{3!} + \dots$ $\frac{x^4}{4!}$ - Now replace the whole expansion of (cosx-1) by x in the expansion of $e^{\cos x - 1} = 1 + (-\frac{x^2}{2l} + \frac{x^4}{4l} - ...) + \frac{1}{2l}(-\frac{x^2}{2l} + \frac{x^4}{4l} - ...)^2 + \frac{1}{4l}(-\frac{x^2}{2l} + \frac{x^4}{4l} - ...)^4$ **Note** : for the square : find the first two terms only as in $(a-b)^2 = a^2 - 2ab$ for the Cube and up : cube only the first term . $e^{\cos x - 1} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{1}{2!} \left(\frac{x^4}{(2!)^2} - 2\frac{x^6}{2!4!} \dots \right) + \frac{1}{4!} \left(\frac{x^6}{(2!)^4} \dots \right)$ $= 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \frac{l}{2!} \left(\frac{x^{4}}{(2!)^{2}} \right) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{6} + \dots (\text{only up to } x^{4})$ $e^{\cos x} = e(e^{\cos x - 1}) = e(1 - \frac{x^2}{2t} + \frac{x^4}{6} + \dots)$ **Example :** find the expansion of $e^x \sin x$ up to x^5 we have $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ and $\sin x = x - \frac{x^3}{3!} + \frac{x^3}{5!} - \frac{x^7}{7!} \dots$ $e^{x} \sin x = (1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} +) (x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!})$ Multiply : $= x - \frac{x^{3}}{2!} + \frac{x^{5}}{5!} \dots + x^{2} - \frac{x^{4}}{2!} \dots + \frac{x^{3}}{2!} - \frac{x^{5}}{2!2!} = x + x^{2} + \frac{x^{3}}{2!} - \frac{x^{5}}{2!2!} \dots$

For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@uaemath.com</u> This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

Simpson's rule : is used to approximate definite integrals: $\int_{-\infty}^{b} f(x) dx \approx \frac{h}{2} [f(a) + 4f(a+h) + 2f(a+2h) + 4f(a+3h)..... + f(b)]$ FETO : Four times even ordinates ; two times odd ordinates. Simpson's rule with **n** ordinates : $h = \frac{b-a}{a}$. **Example:** Use Simpson's rule with 7 ordinates to determine an approximate value for $\int_{-\infty}^{+2} \frac{dx}{4+x^2}$ Compare your answer with a precise answer obtained by integration by substitution or otherwise. $\int_{a}^{b} f(x) dx \approx \frac{h}{2} [f(a) + 4f(a+h) + 2f(a+2h) + \dots + f(b)]$ where h = b - a / 6 = 2 - (-2)/6 = 2/3 $\int_{a}^{b} f(x) dx \approx \frac{2}{9} \Big[f(-2) + 4f(-2 + 2/3) + 2f(-2 + 4/3) + \dots + f(2) \Big]$ **7** ordinates $f(a) = f(-2) = \frac{1}{4 + (-2)^2} = 1/8$, etc..... $\int \frac{\mathrm{dx}}{4+\mathrm{x}^2} \approx 0.7853$ Using $\int \frac{dx}{a^2 + r^2} = \frac{1}{a}tan^{-1}\left(\frac{x}{a}\right) + C$ $\int_{-\infty}^{+2} \frac{dx}{4+x^2} = \frac{1}{2} \tan^{-1} \left(\frac{x}{2}\right) \Big|_{-2}^{-2} = \frac{1}{2} \tan^{-1} \left(\frac{2}{2}\right) - \frac{1}{2} \tan^{-1} \left(\frac{-2}{2}\right)$ $= \frac{1}{2} \tan^{-1} 1 - \frac{1}{2} \tan^{-1} (-1) = \frac{1}{2} (0.7853) - \frac{1}{2} (-0.7853) = 0.7853$ **Consumers & Producers surpluses** $CS = \int P^{D} dq - pq \quad ; \quad PS = pq - \int P^{S} dq$

Where p and q are Equilibrium price and quantity respectively.

For comments, corrections, etc...Please contact Ahnaf Abbas: ahnaf@uaemath.com

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

