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Taylor’s Expansion   
The Taylor polynomial for the function f(x) about x=a is  

 
( ) ( ) .......)a("'f

!3
ax)a(''f

!2
ax)a('f

!1
ax)a(f)x(f

32

+
−

+
−

+
−

+=           

Maclaurin’s Expansion                                                                                                          
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Example:  Expand  f(x) = Arctanx = tan-1x                                                    

f(0) = Arctan 0 = 0 ; f’(x) = 2x1
1
+

⇒  f’(0) = 1 ; f’’(x) = ( )22x1
x2

+
−

⇒ f’’(0)= 0 

f’’’(x) = -2 ,substituting all these in the Maclaurin’s formula: 
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Famous Expansions :  
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Note that expansion of lnx is not possible by Maclaurin’s since the 
derivatives of lnx  at x = 0 ,do not exist : f’(x) = 1/x then f’(0) = 1/0?? 
However, the expansion of lnx  about x = a (a≠ 0) using Taylor’s  is possible : 
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a
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(x-a)3 - ……; e.g. lnx about x = 1  
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Deducing  Expansions Suppose we need the expansion of  e-x  or e2x or ,we 
can do this using the expansion of e

2xe−

x without doing any computation :  we have : 
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+ ….. to get the expansion of e-x  simply replace x by –x in 

the expansion of ex :                                                                        e-x= 1 +(- 
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expansion of  ecosx-1  up to the term x4 ,deduce the expansion  of  ecosx  ;we have 
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Note : for the square : find the first two terms only as in (a-b)2 = a2 – 2ab        
for the Cube and up : cube only the first term . 
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Example : find the expansion of ex sinx   up to x5    
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Simpson’s rule : is used to approximate definite integrals:   

[ ])b(f)......h3a(f4)h2a(f2)ha(f4)a(f
3
hdx)x(f

b

a
+++++++≈∫  
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Example: Use Simpson’s rule with 7 ordinates to determine an approximate  

    value for ∫
+

− +

2

2
2x4

dx    Compare your answer with a precise answer 

           obtained by integration by substitution or otherwise.  
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        where h = b – a / 6 = 2-(-2)/6 = 2/3  
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                              7 ordinates 
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Consumers & Producers surpluses 
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Where p  and  q  are Equilibrium price and quantity respectively.  
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Example: 
The demand for a  

commodity is given  

by :p( q + 1)= 231 

and the supply is given by : 

p – q = 11 .Find the  

consumers’ and     

Producers’ Surpluses. 

 

 

 

 

 

Equilibrium price and quantity :  

p( q + 1)= 231 ⇒  p = 
1q

231
+

                   

p – q = 11   p = 11 + q  ⇒

p = p ⇒  
1q

231
+

 = 11 + q ⇒  

q2 +12q – 220 = 0 
⇒ (q + 22)(q -10) = 0 
  
since  q can not be negative,q= 10                                                    
Hence p= 11 + q= 21 
 
 
 

pqdqPCS
q

0

D −= ∫ = )10)(21(dq 
1q

23110

0

−
+∫ = 231ln(q+1)

0
10
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231ln1 – 210 = 231ln(11) – 210  Since ln1 = 0 ≈334.9                                             
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