For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@uaemath.com</u>

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

International Institute for Technology and Management

October 25^{th} , 2005

Unit 76: Management Mathematics

Handout #5c

Difference Equations III

T =! =	Television
Горіс	Interpretation
Solution of Difference Equations	Examples:
(2) Linear Second Order:	(1) $y_{t+2} - 2y_{t+1} - 15y_t = 0$
a. Homogenous equation:	Given $y_0 = 3$; $y_1 = 7$
$y_{t+2} + ay_{t+1} + by_t = 0$	the <i>auxiliary</i> equation : $r^2 - 2r - 15 = 0$
where a , b are constants and	(r +3)(r -5) = 0 ⇒ r = -3 ; r =5 two
$b \neq 0$; $t = 0, 1, 2,$	distinct real roots: $v_t = A(-3)^t + B(5)^t$
The general solution :	
$y_t = y_c$	$t=0: y_0=3 = A(-3)^6 + B(5)^6 = A + B$
where y_c is the	$t=1: y_1 = 7 = A(-3)^1 + B(5)^1 = -3A + 5B$
complementary function	Solving $-3A + 5B = 7 \cdot A + B = 3$
$y_{c} = Ar_{1}^{t} + Br_{2}^{t}$; A, B are	simultaneously : $A = 1$, $B = 2$
some constants.	\Rightarrow v _t = $A(-3)^{t} + B(5)^{t} = (1)(-3)^{t} + 2(5)^{t}$
r_1 and r_2 are the roots of the	(2) $V_{1,2} = 6V_{1,1} + 9V_{2} = 0$
auxiliary equation :	$(2) y_{1+2} = 0 y_{1+1} + 3 y_1 = 0$
$r^2 + ar + b = 0$	the auxiliary equation : $r^2 - 0r + 9 = 0$
Case 1 : r_1 and r_2 are real distinct.	$(1 - 3) = 0 \implies 1 = 3, 1 = 3$ two equal real roots:
$\mathbf{y}_{\mathbf{t}} = Ar_1^t + Br_2^t$	
Case 2 : r_1 , r_2 are real and	$\mathbf{y}_{\mathrm{t}} = (A + Bt)(3)^{\mathrm{r}}$
equal; $r = r_1 = r_2$	$(3) y_{t+2} + 0.5y_{t+1} + 0.25y_t = 0$
$\mathbf{y}_{t} = (A + Bt)r^{t}$	the <i>auxiliary</i> equation: $r^2 + 0.5r + 0.25 = 0$
Case 3 : r_1 , r_2 are imaginary	$r = \frac{-0.5 \pm \sqrt{-0.75}}{-0.25 \pm i} = -0.25 \pm \frac{i}{-0.75}$
$r_1 = g + ih$, $r_2 = g - ih$	$2^{-1} = 0.25 \pm 2^{-1} = 0.75$
$q = \frac{-a}{1}$; $h = \frac{1}{\sqrt{4b-a^2}}$	$y_t = (\sqrt{0.25})^t (A\cos\alpha t + B\sin\alpha t)$
	$\alpha = \cos^{-1}(\frac{-a}{a}) = \cos^{-1}(-0.5/2\sqrt{0.25})$
$y_t = (\sqrt{b})^t (A\cos\alpha t + B\sin\alpha t)$	$a = \cos \left(\frac{2\sqrt{b}}{2\sqrt{b}} \right) = \cos \left(\frac{0.5}{2} + \frac{0.25}{2} \right)$
A,B constants ; $\alpha = \cos^{-1}(\frac{-a}{2\sqrt{b}})$	$=\cos^{-1}(-0.5)=\frac{2\pi}{3}$
	$y_t = (0.5)^t (A\cos\frac{2\pi}{3}t + B\sin\frac{2\pi}{3}t)$

For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@uaemath.com</u>

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

b. Non Homogenous Equation:

$$y_{t+2} + ay_{t+1} + by_t = r_t$$
where a , b are constants and

$$b \neq 0$$
; $t = 0, 1, 2,$
The general solution :

$$y_t = y_t + y_p$$
where y_c is the
complementary function and y_p
is the particular solution.

$$y_c = Ar_1^{t} + Br_2^{t}$$
; A , B are
some constants.

$$r_1$$
 and r_2 are the roots of the
auxiliary equation :

$$r^2 + ar + b = 0$$
Finding the Particular Solution

$$x_{t+2} + ay_{t+1} + by_t = c$$
The particular solution is :

$$y_p = \frac{c}{1+a+b}$$
; $a+b \neq -1$;

$$y_p = \frac{c}{2+a}t$$
; $a+b=-1$; $a \neq -2$

$$y_p = \frac{c}{2+a}t^2$$
; $a+b=-1$; $a \neq -2$

$$y_p = \frac{c}{2+a}t^2$$
; $a+b=-1$; $a \neq -2$

$$y_p = \frac{c}{2+a}t^2$$
; $a+b=-1$; $a \neq -2$
Conditions for oscillation: assume
the roots of the auxiliary equation
are r_1 , and r_2 ; time path is
oscillating in the following cases:
1. The dominant root $> 1: |r_1| < 1$
Diverges.
1. The dominant root $< 1: |r_1| < 1$
Diverges.
b. Non Homogenous Equation:

$$y_{t+2} + 2y_{t+1} + by_t = c$$
The dominant root $< 1: |r_1| < 1$
Diverges.
b. Non Homogenous Equation:

$$y_{t+2} = \frac{c}{1+a+b} = \frac{1}{2}; a = -2$$
The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |r_1| < 1$
b. The dominant root $< 1: |$

For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@uaemath.com</u>

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

	(b)The auxiliary roots : $r^2 + 2 = 0$
Case 2 : r_t is NOT constant	$r = -i\sqrt{2}$, $r = +i\sqrt{2}$
$y_{1,2} + ay_{1,2} + by_1 - r_1$	The complementary function:
The following table gives the	$\mathbf{v}_{t} = (\sqrt{2})^{t} (A\cos\alpha t + B\sin\alpha t)$
trial v_p for different values of r_t	
	$\alpha = \cos^{-1}(\frac{-a}{2\sqrt{b}}) = \cos^{-1}(0) = \frac{\pi}{2}$
r_t y_P t^n $A_0 + A_1 t + + A_n t^n$	$y_{t} = (\sqrt{2})^{t} (A\cos\frac{\pi}{2}t + B\sin\frac{\pi}{2}t)$
e.g. $t + 3$ A + Bt $2t^2$ A + Bt + Ct ²	(c) The general solution: $y_t = y_c + y_p$
e.g. 2 ^t A2 ^t	$y_{t} = (\sqrt{2})^{t} (A\cos\frac{\pi}{2}t + B\sin\frac{\pi}{2}t) + 8$
$\begin{array}{c c} 2^{t} + t & A2^{t} + Bt + C \\ \hline a^{t} t^{n} & a^{t}(A_{0} + A_{1}t + \dots + A_{n}t^{n}) \end{array}$	(d) $y_0 = 11 \Rightarrow A + 8 = 11 \Rightarrow A = 3$
e.g. 2^{t} (t) 2^{t} (Bt + C)	$\Rightarrow B = \frac{10}{\sqrt{2}} = 7.07$
a' sinbt a' (Acosbt + Bsinbt)	$\sqrt{2}$
a^{t} cosht a^{t} (Acosht + Bsinht)	$\mathbf{y}_{t} = (\sqrt{2})^{t} (3\cos{\frac{\pi}{t}}t + 7.07\sin{\frac{\pi}{t}}t) + 8$
e.g. $\cos \pi t$ Acos πt + Bsin πt	
Solution method : Substitute the particular solution in the original equation to find the constants.	 (e) with √2 > 1, the time path is divergent. Oscillating for having complex auxiliary roots. Divergent oscillating. 3. y_{t+2}-11y_{t+1} +10y_t = 27
Examples :	(a) $a + b = -11 + 10 = -1$; $b \neq -2$
$r_t = 3t + 2$; $y_p = A + Bt$	$y_p = \frac{1}{2+a}t = -3t$
$r_t = t^3$; $y_p = A + Bt + Ct^2 + Dt^3$	(b)The auxiliary roots : $r^2 - 11r + 10 = 0$ r = 1, r = 10
$r_t = 2\cos 3t + t;$	The complementary function: $y_c = Ar_1^t + Br_2^t = A(1)^t + B(10)^t = A + B(10)^t$
$y_p = Acos3t + B sin3t + C + Dt$	(c) The general solution: $\mathbf{y}_t = \mathbf{y}_c + \mathbf{y}_p$ $\mathbf{y}_t = \mathbf{A} + \mathbf{B}(10)^t - 3t$
Examples: Solve the following equations:	(d) $y_0=2 \implies A + B = 2$ $y_1=53 \implies A + 10B - 3 = 53$
1. $9y_{t+2} + 6y_{t+1} + y_t = 2t + 1$	Solving simultaneously $A = -4$, $B = 6$
$y_1 = 1$, $y_2 = 3$	The definite solution: $y_{t} = -4 + 6(10)^{t} - 3^{t}$
2. $y_{t+2} - 3y_{t+1} + 0y_t - 3 + 1$	(e) The time path is divergent since the
3. $2y_{t+2} - y_{t+1} - y_t = \sin \pi t$	dominant root 10 is greater than 1. Non-oscillating since 10 is positive.

For comments, corrections, etc...Please contact Ahnaf Abbas: ahnaf@uaemath.com

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

1. $9y_{t+2} + 6y_{t+1} + y_t = 2t + 1$ $y_1 = 1$, $y_2 = 3$ The auxiliary equation : $9r^2 + 6r + 1 = 0$ i.e. (3r + 1)(3r + 1) = 0r = -1/3 two equal real roots. The complementary function : $y_c = (A + Bt)(-1/3)^t$ For a particular solution ,try $y_p = C + Dt$ substitute this in the original Equation : $9y_{t+2} + 6y_{t+1} + y_t = 2t + 1$ \Rightarrow 9[C + D(t+2)] + 6[C + D(t+1)] + C + Dt = 2t + 1 \Rightarrow (9D + 6D + D)t + 9C + 6C + C+18D+6D = 2t+1 \Rightarrow 16Dt + 16C + 24D = 2t + 1 equating coefficients of t and the constant terms: 16D = 2; D = 1/8; 16C + 24(1/8) = 1; C = -2/16 = -1/8Hence $y_p = (1/8)t - 1/8$ The general solution : $y_t = y_c + y_p = (A + Bt)(-1/3)^t + (1/8)t - 1/8$ Now use $y_1=1$, $y_2=3$ to find A and B 2. $v_{t+2} - 5v_{t+1} + 6v_t = 4^t + t$ The auxiliary equation : $r^2 - 5r + 6 = 0$ i.e. (r - 2) (r - 3) = 0; r = 2, r = 3. The complementary function : $y_c = A(2)^t + B(3)^t$ For a particular solution ,try $y_p = C4^t + D + Et$ substitute this in the original Equation : y_{t+2} -5 y_{t+1} +6 y_t = 4^t + t $C4^{t+2} + D + E(t+2) - 5[C4^{t+1} + D + E(t+1)] + 6(C4^{t} + D + Et) = 4^{t} + t$ to find C=1/2 , D=3/4 and E=1/2 : $y_p = C4^t + D + Et = (1/2) 4^t + \frac{3}{4} + \frac{1}{2}$ $y_t = y_c + y_p = A(2)^t + B(3)^t + (1/2) 4^t + \frac{3}{4} + \frac{1}{2}$ 3. $2y_{t+2} - y_{t+1} - y_t = \sin \pi t$ The auxiliary equation : $2r^2 - r - 1 = 0$ i.e. (2r - 1)(r - 1) = 0r = 1/2, r = 1. The complementary function : $y_c = A(1/2)^t + B(1)^t = A(1/2)^t + B$ For a particular solution ,try $y_p = C \cos \pi t + D \sin \pi t$ substitute this in the original Equation : $2y_{t+2} - y_{t+1} - y_t = \sin \pi t$ to find C and D. $2(C\cos(t+2)\pi + D\sin(t+2)\pi) - (C\cos(t+1)\pi + D\sin(t+1)\pi) - (C\cos\pi t + D)$ $\sin \pi t$) = $\sin \pi t$ Now $\sin(t+2) \pi = \sin \pi t$, $\cos(t+2) \pi = \cos \pi t$, $\sin(t+1) \pi = -\sin \pi t$, $\cos(t+1) \pi = -\cos \pi t$: $2(C \cos \pi + D \sin \pi) - (-C \cos \pi - D \sin \pi) - (C \cos \pi t + D \sin \pi t) = \sin \pi t$ $2 \operatorname{C} \operatorname{cost} \pi - 2 \operatorname{D} \operatorname{sint} \pi = \operatorname{sin} \pi t ; C = 0 ; D = -\frac{1}{2}$ $y_t = y_c + y_p = A(1/2)^t + B - \frac{1}{2} \sin \pi t$