For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@uaemath.com</u>

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

International Institute for Technology and Management

October 18^{th} , 2005

Unit 76: Management Mathematics

Handout #5a

Difference Equations I

Topic	Interpretation
Difference Equations Difference equation (or Dynamical system) is a sequence of numbers that generated recursively using a rule to relate each number in the sequence to previous numbers in the sequence. Examples: $Y_t = a + bY_{t-1}$; a, b constants. $Y_{k+2} + Y_{k+1} - 6Y_k = 0$ Order of Difference Equation The order of a dynamical system or difference equation is the difference between the largest and the smallest arguments k appearing in it. Find the order of the following difference equations: (1) $Y_{k-3} - 3Y_{k-4} = 0$ (2) $Y_{k+3} + aY_{k+1} = bY_{k-1} + c$ (1) $k-3 - (k-4) = -3 + 4 = 1$	Dynamical system is a system that changes over time. Difference equation is an equation involving differences. We can see difference equation from at least three points of views: as sequence of number, dynamical system and iterated function. x = 5 is an example of a static system because the variable x is constant over time. x = 5 is an example of simple dynamic system. The system is depending on the value of the time t. Example: $Y_{k+1} = a Y_k + b$ has order K+1 - k = 1 (2) $k+3 - (k-1) = 3 + 1 = 4$
Solution of Difference Equations (1) First order : We have difference equation $y_k = ay_{k-1} + b$ with initial value y_0 $k = 1$: $y_1 = ay_0 + b$ k = 2: $y_2 = ay_1 + b = a[ay_0 + b] + b$ $y_2 = a^2y_0 + b(1 + a)$ $k = 3$: $y_3 = ay_2 + b$ $= a[a^2y_0 + b(1 + a)] + b$ $y_3 = a^3y_0 + b(1 + a + a^2)$	$k = n: y_{n} = ay_{n-1} + b$ $y_{n} = a[a^{n-1}y_{0} + b(1 + a + a^{2} + + a^{n-2})] + b$ $y_{n} = a^{n}y_{0} + b(1 + a + a^{2} +a^{n-1})$ $1 + a + a^{2} +a^{n-1} \text{ is a GP of first term 1, number of terms n and common ratio r = a:}$ $1 + a + a^{2} +a^{n-1} = a_{1} \times \frac{1 - r^{n}}{1 - r} = 1 \times \frac{1 - a^{n}}{1 - a}$ However if a = 1 then $1 + a + a^{2} +a^{n-1} = n$ $y_{n} = y_{0} + bn \text{ if } a = 1$ $y_{n} = a^{n}y_{0} + b(1 - a^{n}/1 - a) \text{ if } a \neq 1$

For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@uaemath.com</u>

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

Торіс	Interpretation
Examples:	
(1) $y_k = 2y_{k-1} - 5$; $y_0 = y_0$	(1) $y_n = a^n y_0 + b(1 - a^n / 1 - a)$ a = 2; b = -5
(2) $y_k = y_{k-1} + 3$; $y_0 = 7$	$y_n = 2^n y_0 - 5(\frac{1-2^n}{1-2})$
Alternative method:	1-2
$y_k = ay_{k-1} + b$ We find a solution which is	$y_n = 2^n y_0 + 5(1 - 2^n) =$
independent of k;Let this solution be y^* then :	$= 2^{n} y_{0} + 5 - 5 \times 2^{n} = 5 + 2^{n} (y_{0} - 5)$
$y^* = a y^* + b \Rightarrow y^* = \frac{b}{1-a}$	(2) a = 1 ; b = 3 ; $y_0 = 7$
Now use the substitution:	$y_n = y_0 + bn = 7 + 3n$
$y_k = y^* + z_k$	Alternative method solution:
$y_k = ay_{k-1} + b$	(1) $y_k = 2y_{k-1} - 5$
\Rightarrow y [*] + z _k = a(y [*] + z _{k-1}) + b	a = 2 ; b = - 5
\Rightarrow y [*] + z _k = ay [*] + az _{k-1} + b	$y^* = \frac{b}{1-a} = 5$
But $y^* = ay^* + b \Rightarrow z_k = az_{k-1}$	$y_n = y^* + a^n (y_0 - y^*)$
$z_1 = a z_0;$	$y_n = 5 + 2^n(y_0 - 5)$
$z_2 = az_1 = a(az_0) = a^2 z_0$	(2) $y_k = y_{k-1} + 3; y_0 = 7$
$z_k = a^k z_0$	$a = 1$; $b = 3$; $y_0 = 7$
$y_k = y^* + z_k = y^* + a^k z_0$	This says simply that each term is obtained by adding 3 to the previous one
Since $y_k = y^* + z_k \Rightarrow y_0 = y^* + z_0$	$y_1 = y_0 + 3$ $y_2 = y_1 + 3 = y_0 + 2(3)$ $y_3 = y_2 + 3 = y_0 + 2(3) + 3 = y_0 + 3(3)$
$\Rightarrow z_0 = y_0 - y^*$ Hence $y_k = y^* + a^k (y_0 - y^*)$	$y_3 = y_2 + 3 = y_0 + 2(3) + 3 = y_0 + 3(3)$ $y_n = y_0 + 3n$ with $y_0 = 7$ $y_n = 7 + 3n$