This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

International Institute for Technology and Management

Unit 76: Management Mathematics

Handout #14

Course Summary

Chapter 1 : Set Theory

- \cap : means **AND** ; \cup : means **OR** ; Compliment : means **NOT**. Example: A = set of male students then A^c = set of female students.

- Demorgan's Theorems: useful in describing sets with statements:

a.
$$(\mathbf{A} \cap \mathbf{B})^{c} = \mathbf{A}^{c} \cup \mathbf{B}^{c}$$

b.
$$(\mathbf{A} \cup \mathbf{B})^{c} = \mathbf{A}^{c} \cap \mathbf{B}^{c}$$

Example: set of people that are not (A: smokers) \cap (and) not (B: alcoholic) = $(\mathbf{A} \cap \mathbf{B})^{c}$ = set of people that are $(\mathbf{A}^{c} = \text{not smokers}) \text{ or}(\cup)(\mathbf{B}^{c} = (\text{not alcoholic.}))$ Using (a).

-Union rule for counting: $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ -Venn Diagram:

-Discovering erroneous data:

1. When the sum of orders(number of elements) of all sets > the given number of observations.

2. When the order of one or more set is **negative**.

-Correcting the errors: Look at

- 1. The above 8 disjoint sets : try to decrease or increase their orders.
- 2. The orders of the original three sets: try to decrease or increase their orders
- 3. Usually ,don't tamper with sets of small order.

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, http://www.gnu.org/copyleft/fdl.html Version 1.2 or any later version published by the Free Software Foundation.

Chapter 2 : Index Numbers

- Simple price index (Single item): Price relative = $\frac{p_t}{100}$ ×100 P_t : price in a later period ; P_0 : price in the base period. - Simple Aggregate Index: 1. Un weighted : $\frac{\sum_{i}^{N} p_{it}}{\sum_{i}^{N} p_{i0}} \times 100$; 2. Weighted : $\frac{\sum_{i}^{N} p_{it} \times q_{it}}{\sum_{i}^{N} p_{i0} \times q_{i0}} \times 100$ - Laspeyre's Price Index : $\frac{\sum_{i}^{N} p_{it} \times q_{i0}}{\sum_{i}^{N} p_{i0} \times q_{i0}} \times 100$; Paasche's Price index: $\frac{\sum_{i}^{N} p_{it} \times q_{it}}{\sum_{i}^{N} p_{i0} \times q_{i0}} \times 100$ Remark: Laspeyre's Index is **base** year weighted and Paasche's Price index is *final* year weighted and this is the main reason why they differ. -Quantity(Volume) indices: Laspeyre's: $\frac{\sum_{i}^{N} p_{i0} \times q_{it}}{\sum_{i}^{N} p_{i0} \times q_{i0}} \times 100$; Paasche's: $\frac{\sum_{i}^{N} p_{it} \times q_{it}}{\sum_{i}^{N} p_{it} \times q_{i0}} \times 100$ The prices remain relatively stable and the quantities of items which are changing. - Ideal Indices : **1. Irving Fischer Index:** The geometric mean of the original indices = $\sqrt{Laspever's \times Paasche's \times 100}$ 2. Marshall-Edgeworth Index: Uses the arithmetic mean of the quantities purchased in the base and the current periods as weights. - Index Tests: Are used to determine how good an index is: **1. Time reversal test:** Reversing the time subscripts produces the reciprocal of the original index: $\mathbf{I}_{01} \times \mathbf{I}_{10} = \mathbf{1}$; \mathbf{I}_{01} : Index of current year with the base year 100; I_{10} : Index of the base year taking the current year as base. **2. Factor reversal test:** The product of the price index and the quantity index should be equal to the index of total value. -Chain base Index: the base period shifts for each successive index. Chain Base Index = $\frac{Index \ of \ current \ year}{Index \ of \ previous \ year} \times 100$ - **Splicing Index Numbers:** Two or more overlapping series(say A and B) of Index numbers are **combined** into one series: (Index of current year of B)x(Index of final year of A) / 100 **Example**: A:1990 to 1993 where $I_{1993} = 130$; B:1993 to 1996 where $I_{1993} = 100$ $I_{1994} = 125$; $I_{1995} = 150$; $I_{1996} = 160$ then $I_{1994} = 125 \times 130/100 = 162.5$ etc.... -Shifting the base year: $\frac{Index \text{ of current year}}{Index \text{ of New base year}} \times 100$ -**Deflating a Series** :Real Prices = $\frac{current \ prices}{Index \ of \ current \ year} \times 100$ http://www.mathyards.com/lse 2

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

		-		
sin(-x) = -sin(x)	x) sin(π /2-	$-x) = \cos(x)$,	$\sin(\pi/2+x) = \cos(x),$	
$\cos(-x) = \cos(x)$) $\cos(\pi/2 -$	-x) = sin(x),	$\cos\left(\frac{\pi}{2}+x\right) = -\sin\left(x\right),$	
$\tan(-x) = -\tan(x)$	x) $\tan(\pi/2 - \cos(\pi/2 - \sin(\pi/2 - \cos(\pi/2 - \sin(\pi/2 - i)))))))))))))))))))))))))))))))))))$	-x) = cot(x),	$\tan\left(\frac{\pi}{2+x}\right) = -\cot\left(x\right),$	
$\operatorname{Sec}(-\mathbf{x}) = \operatorname{Sec}(\mathbf{x})$	$sec(\pi/2 - sec(\pi/2 - sec($	-x) = csc(x),	$sec(\pi/2+x) = -csc(x)$,	
$\csc(-x) = -\csc(x)$	($\mathbf{n}/2$) $\operatorname{csc}(\mathbf{n}/2$	-x) = sec(x).	$\csc(\pi/2+x) = \sec(x)$.	
$sin(\pi-x) = sin(x)$	x), sin(π +x)	$= -\sin(x)$,	You don't have to	
$\cos(\pi - x) = -\cos(\pi - x)$	(x) , $\cos(\pi + x)$	$= -\cos(x)$,	memorize these, Use	
$tan(\mathbf{x}-\mathbf{x}) = -tan$	(x), $tan(M+x)(x)$, $cot(M+x)$	$= \tan(x),$	your Calculator to check	
$sec(\mathbf{I} \cdot \mathbf{x}) = -sec$	(x) , $\cot(\underline{u}+x)$ (x) , $\sec(\underline{u}+x)$	$= -\sec(x)$	them.i.e. if you are faced	
$\csc(\mathbf{n} - \mathbf{x}) = \csc(\mathbf{x})$	$\begin{array}{c} (\mathbf{n},\mathbf{r}) \\ (\mathbf{x}) \\ \mathbf{x} \end{array} \qquad $	$= -\csc(x)$.	with $\cos(t + \pi)$ choose	
			t = 30; find cos 30=0.86	
			and $\cos(30+180) =$	
			$\cos(t + 100)$	
Deviedicity			$\cos(t + 180) = -\cos t$	
Periodicity: $coc(w + 2k_{-}) = cocw$	$i \sin(n + 2k_{-}) =$	cina		
$\cos(\alpha + 2\kappa\pi) = \cos\alpha$; $SIII(\alpha + ZK\pi) =$	$\sin(t) = 1.4$	- cin(t + -) - cint	
e.g. $\cos(t + 6\pi) = co$	$\operatorname{St} ; \operatorname{Sin}(t + 5\pi) = s$	$\sin(t + \pi + 4\pi)$	$f = \sin(t+\pi) = -\sin t$	
$tan(\alpha + k\pi) = tan\alpha$; $\cot(\alpha + \kappa\pi) = \cos(\alpha + \kappa\pi)$	τα		
e.g. $tan(t + 6\pi) = ta$	nt; $tan(t + 5\pi) =$	tant		
Basic Relations :				
$\csc \alpha = \frac{1}{1}$	$\sec \alpha = \frac{1}{2}$	_ tan	$\alpha = \frac{1}{1} = \frac{\sin \alpha}{1}$	
$\sin \alpha = \frac{1}{\sin \alpha}$	$sce \alpha = \frac{1}{\cos \alpha}$	α	$a^{-}\cot \alpha - \cos \alpha$	
$\sin^2 \alpha + \cos^2 \alpha = 1$ $1 + \tan^2 \alpha = \sec^2 \alpha$ $\sin \alpha = \pm \sqrt{1 - \cos^2 \alpha}$ $\cos \alpha = \pm \sqrt{1 - \sin^2 \alpha}$				
Double Angle Relat	tions			
$\sin 2\alpha - 2\sin \alpha \cos \alpha - \frac{2\tan \alpha}{1-1} \qquad \qquad \tan 2\alpha - \frac{2\tan \alpha}{1-1} \qquad \qquad \cot^2 \alpha - 1$				
$\sin 2\alpha - 2\sin \alpha \cos \alpha - \frac{1}{1 + \tan^2 \alpha} \qquad \qquad \tan 2\alpha = \frac{1}{1 - \tan^2 \alpha} \qquad \qquad \cot 2\alpha = \frac{1}{2\cot \alpha}$				
$1 \tan^2 \alpha$				
$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha = \frac{1 - \tan^2 \alpha}{2}$				
		$1 + \tan^2$	$\frac{1}{\alpha}$	
Exponential Relation	ons			
where: $i = \sqrt{-1}$; E	uler's Formula :	$e^{i\alpha} = \cos \alpha + i \operatorname{s}$	$in \alpha$	
$e^{i\alpha}-e^{-i\alpha}$	$e^{i\alpha} + e^{-i\alpha}$			
$\sin \alpha = \frac{\gamma_i}{\gamma_i}$	$\cos \alpha =2$			
Derivatives:	2			
$y = \sin ax$	$y' = a \cos a x$	$y = \cos ax$	$y' = -a \sin a x$	
y = tanax	$y' = a(1+tan^2ax)$	y =cotax	$y' = -a(1+\cot^2 x)$	
Integrals:				
r = -1 $r = 1$				
r = -1	· · · ·	, I.		
$\int \sin ax dx = \frac{-l}{2} \cos ax dx$	$ax + c$; $\int cos axd$	$x = \frac{1}{a}$ sinax +	С	
$\int \sin ax dx = \frac{-l}{a} \cos a$	$ax + c$; $\int cos axd$	$x = \frac{1}{a}$ sinax +	C	
$\int \sin ax dx = \frac{-1}{a} \cos ax dx$ $\int \tan ax dx = \frac{-1}{a} \ln ax dx$	$ax + c$; $\int cos axd$	$x = \frac{1}{a}$ sinax +	C	

http://www.mathyards.com/lse

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

Chapter 5 : Difference Equations

2nd order linear difference equation: $y_{t+2} + ay_{t+1} + by_t = r_t$ **Solution :** $y_t = y_c + y_p$

Step1 : solve the homogeneous equation : $y_{t+2} + ay_{t+1} + by_t = 0$

The auxiliary equation : $r^2 + ar + b = 0$ (Remember to arrange the equation from higher index to lowest i.e. y_{t+2} then y_{t+1} then y_t)

Case 1 : r_1 and r_2 are real distinct: $\mathbf{y}_t = Ar_1^t + Br_2^t$

Case 2: r_1 , r_2 are real and equal; $r = r_1 = r_2$: $\mathbf{y_t} = (A + Bt)r^t$

Case 3: r_1 , r_2 are imaginary: $\mathbf{y}_t = (\sqrt{b})^t (A\cos\alpha t + B\sin\alpha t); \alpha = \cos^{-1}(\frac{-a}{2\sqrt{b}})$

Make sure your calculator mode is set to Radians.

Example: $9y_{t+2} + 6y_{t+1} + y_t = 2t + 1$; $y_1=1$, $y_2=3$ The auxiliary equation : $9r^2 + 6r + 1 = 0$ i.e. (3r + 1) (3r + 1) = 0r = -1/3 two equal real roots. The complementary function : $y_c = (A + Bt)(-1/3)^t$ **Step2**: Find the particular solution y_p according to the following table:

r _t	Уp	r _t	Уp
Constant C	С	a ^t t ⁿ	$a^{t}(A_{0}+A_{1}t++A_{n}t^{n})$
e.g. 6	С	e.g. 2 ^t (t)	$2^{t}(C + Dt)$
t ⁿ	$A_0+A_1t++A_nt^n$	a ^t sinbt	a ^t (Acosbt + Bsinbt)
e.g. t + 3	C + Dt	e.g. sin2t	Ccos2t + Dsin2t
2t ²	$C + Dt + Et^2$		
a ^t	Ca ^t	a ^t cosbt	a ^t (Acosbt + Bsinbt)
e.g. 2 ^t	C2 ^t	e.g. $\cos \pi$ t	$C\cos \pi t + D\sin \pi t$
2 ^t + t	$C2^{t} + Dt + E$		

Solution method: Substitute the particular solution in the original equation to find the constants C & D . In the above example : For a particular solution , $y_p = C + Dt$ substitute this in the original Equation : $9y_{t+2} + 6y_{t+1} + y_t = 2t + 1$ $\Rightarrow 9[C + D(t+2)] + 6[C + D(t+1)] + C + Dt = 2t + 1; D = 1/8; C = -1/8$ Hence $y_p = (1/8)t - 1/8$

Step3: Write the general solution : $\mathbf{y_t} = \mathbf{y_c} + \mathbf{y_p}$ and use the boundary conditions to find the constants A & B. **In the above example:** $\mathbf{y_t} = \mathbf{y_c} + \mathbf{y_p} = (A + Bt)(-1/3)^t + (1/8)t - 1/8$; with $y_1 = 1$, $y_2 = 3$, substitute (t = 1; y = 1) and (t = 2, y = 3) and solve for $A \approx -32$ and $B \approx -29$. $\mathbf{y_t} = (-32 + 29t)(-1/3)^t + (1/8)t - 1/8$

Behavior of the series:

<u>General method</u>: Find the limit of the general solution as $t \rightarrow \infty$: -If the limit is ∞ , then the series is divergent (unstable, explodes) -If the limit is a *number*, then the series is convergent(stable)

Remember:
$$\lim_{t \to \infty} a^t = \infty$$
 if $|\mathbf{a}| > 1$ e.g. $2^{\infty} \dots \to \infty$
 $\lim_{t \to \infty} a^t = 0$ if $|\mathbf{a}| < 1$ e.g. $(1/2)^{\infty} = 0$

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, http://www.gnu.org/copyleft/fdl.html Version 1.2 or any later version published by the Free Software Foundation.

From the auxiliary roots: The auxiliary root with the largest absolute value is called the *dominant* root.

- Oscillation (part of the graph above the t-axis and the other part is below the t-axis) occurs when:

1. complex roots; **2.** Both roots are negative; **3.** the dominant root is negative. -Non Oscillating:

1.Both roots are real **positive** ; 2. the dominant root is positive.

- Stability : Real roots :

1.The dominant root > 1 : $|r_1| > 1$: Diverges.

2.The dominant root $< 1 : |r_1| < 1$: Converges.

Complex roots :

1. \sqrt{b} > **1** : **Diverges**, simply because it tends to ∞ this case(>1)

2. \sqrt{b} **< 1 : converges,** simply because it tends to 0 this case(<1)

Examples:

$A(-1)^{t} + B(-6)^{t} + 3$	$y_t = -4(1)^t + 6(10)^t - 3t$
Both roots are negative : Oscillating	Both roots are positive :Non Oscillating
-6 > 1 : Divergent	10 > 1 : Divergent
$(\sqrt{2})^t (A\cos\frac{\pi}{2}t + B\sin\frac{\pi}{2}t) + 8$	$\mathbf{y}_{t} = A(-3)^t + B(5)^t$
Complex roots : Oscillating	The dominant root = 5 is positive:
$\sqrt{2}$ > 1 : Divergent	5 > 1: Divergent.

Remark: if there is a y_p; then stability depends on the limit of y_p; see graph below!! **<u>Graph</u>**: The graph of a Difference equation solution is always a **Step Graph** : **Example**: the solution of the difference equation: $9y_{t+2} + 6y_{t+1} + y_t = 2t + 1$

; $y_1=1$, $y_2=3$ is given by : $y_t = (-32 + 29t)(-1/3)^t + (1/8)t - 1/8$

that lies in the interval $0 \le t < 1$.

t = 1; $Y_t = 1$ means of the graph $Y_t = 1$ (str. line // t-axis), we take only the part that lies in the interval $1 \le t < 2$ etc....

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

Chapter 6 : Differential Equations

First Order types : 1. Equations of the form y' = f(t); simply integrate both sides of the equation. **2. Linear Equation** $\frac{dy}{dt}$ + Py = Q ; Where P & Q are functions of **t only**. Solution : $y = e^{\int -Pdt} \left(\int Q e^{\int Pdt} dt + c \right)$ **3. Linear Equation** P $\frac{dy}{dt}$ + Q = 0 ; Where P and Q are functions of **y** and **t**: **Case 1 : Separable variables** $\frac{dy}{dt} = f(y)g(t) \Rightarrow \frac{dy}{f(y)} = g(t)dt$ Then integrate bothsides. Case 2 : Homogenous equation: (sum of the powers of y and t is the same in all of the terms): P $\frac{dy}{dt}$ + Q = 0 ; $\frac{dy}{dt} = \frac{-Q}{P}$; divide both the numerator and denominator by t^n , Where n is the degree of homogeneity, then set $y = vt \Rightarrow \frac{dy}{dt} = v + t \frac{dv}{dt}$; Substitute this in the original equation to get a separable equation of variables equation in t and v. Second Order $\frac{d^2y}{dt^2}$ + a $\frac{dy}{dt}$ + by = f(t); Similar situation to Difference Equations. The general solution : $\mathbf{y} = \mathbf{y}_{c} + \mathbf{y}_{p}$ The auxiliary equation : $r^2 + ar + b = 0$ (Remember to arrange the equation from higher index to lowest i.e. y" then y' then y) **Case 1**: r_1 and r_2 are real distinct : $y_c = Ae^{r_1t} + Be^{r_2t}$ **Case 2 :** r_1 , r_2 are real and equal; $r = r_1 = r_2$: $y_c = (A + Bt)e^{rt}$ **Case 3 :** r_1 , r_2 are imaginary : $y_c = e^{\frac{-a}{2}t} (A \cos \alpha t + B \sin \alpha t)$ where $\alpha = \frac{\sqrt{4b-a^2}}{2}$ (Because the solution depends on a and b; if the equation is given in the form : 2y'' + 6y' + 4y = 0; You need to divide by 2 to get the correct values of a and b : y'' + 3y' + 2y = 0). Finding the Particular Solution: Use same table above (that of difference Eq., p.5) **About Particular solutions** In some cases you may substitute the particular solution in the equation and get **no** values for the constants. This occurs when the particular solution is part of the complementary function. $y'' - 5y' + 4y = e^{4x}$; $r^2 - 5r + 4 = 0 \Rightarrow r = 1$; r = 4 $y_c = Ae^x + Be^{4x}$ Note: e^{4x} is part of y_c : The particular solution $y_p = Ce^{4x}$ will not work! To fix it we attach x to Ce^{4x} :y_p = Cxe^{4x}

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

Examples:				
$y'' + 3y' - 10y = 3t + e^{-5t} - 1$	$y'' - 9y = 5t^2e^{3t} + tcost - sint$			
The auxiliary roots : $r = 2$, $r = -5$	$\mathbf{y}_{c} = Ae^{-3t} + Be^{3t}$			
$y_c = Ae^{2t} + Be^{-5t}$	The original particular			
The original particular solution:	solution: $y_p = (C+Dt+Et^2)e^{3t}$			
$y_p = C + Dt + Ee^{-5t}$ will not work!	+(Ft+G)cost + (H+It)sint will not			
Since e^{-5t} is part of the	work! Since e ^{3t} is part of the			
complimentary function.	complimentary function.			
To fix it we attach t to Ee ^{-5t} : the	To fix it we attach t to			
correct one : $y_p = C + Dt + Ete^{-3t}$	$(C + Dt + Et^2)e^{3t}$			
	$y_p = t(C+Dt+Et^2)e^{3t}$			
	+(Ft+G)cost+(H+It)sint			
$d^2y + 2dy = 28x + e^{-7x} + 7x + 1$	$d^2 y \rightarrow dy + 2 x \rightarrow 2 e^x$			
$\frac{1}{dr^2} + 3\frac{1}{dr} - 28y = e + 7x - 1$	$\frac{dx^2}{dx^2} - 2\frac{dx}{dx} + 2y = 2e \cos x$			
$v_{-} = \Delta e^{-7x} + Be^{4x}$	$v_{x} = e^{x} (A \cos x + B \sin x)$			
ye - ne i be	$y_c = c \left(\frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} \right)$			
$y = C x e^{-7x} + D + E x$	$y_p = xc$ (c cosx + Dsinx)			
$y_p = Cxe + D + Lx$				
General method: Find the limit of the general solution as t→∞: -If the limit is ∞, then the series is divergent (unstable, explodes) -If the limit is a number, then the series is convergent(stable) Remember : As t→∞, e ^{-t} → 0; As t→∞, e ^t →∞ From the auxiliary roots: Conditions for oscillation: Assume the roots of the auxiliary equation are r ₁ and r ₂ ; time path is oscillating if both roots are complex. Conditions for convergence: 1. Two real distinct roots: Both negative :r ₁ < 0 and r ₂ < 0 : Converges. If one of the roots is positive: Diverges. 2. Two real equal roots : If the repeated root is negative: Converges. If the repeated root is positive: Diverges.				
3. Complex roots : $e^{\kappa t} (A \cos \alpha t + B \sin \alpha t)$; If k < 0 ; converges.				
Example : $y = e^{-3t} (2\cos 5t + 4\sin 5t) : -3 < 0$; it converges.(or $e^{-3t} \rightarrow 0$ as $t \rightarrow \infty$) Remark: if both roots are negative or the repeated root is negative and there is a particular integral y _p then the behavior depends on y _p on the long run. Examples :				
$y = 5e^{-t} - 3e^{-2t} + 7$	$y = -2e^{3t} - e^{-2t} + 2$			
Both roots are negative: converges.	One of the roots: $3 > 0$:diverges.			
OR As t $\rightarrow \infty$; e ^{-t} - $\rightarrow 0$; e ^{-2t} - $\rightarrow 0$	OR As t $\rightarrow \infty$; $e^{3t} \rightarrow \infty$; $e^{-2t} \rightarrow 0$			
y converges to 7.				
$y = e^{5t} - 3e^{2t} + t + 1$	$y = 5e^{-t} - 3e^{-2t} + t + 1$			
Both roots are positive ; diverges.	As t→∞ ; e ^{-t} -→ 0 ; e ^{-2t} -→ 0			

OR As t---> ∞ ; $e^{5t} \rightarrow \infty$; $e^{2t} \rightarrow \infty$

it depends on t + $1 \rightarrow \infty$, diverges

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

for the various commodities from outside the production system; ${\bf A}$: technology matrix ;

$$\mathbf{X} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{D}$$

I – **A** is often known as the **Leontief** matrix.

Example: The technology matrix for a three-industry input-output model is :

$$\mathbf{A} = \begin{pmatrix} 0.5 & 0 & 0.2 \\ 0.2 & 0.8 & 0.12 \\ 1 & 0.4 & 0 \end{pmatrix}$$
 If the non-industry demand for the output of these

industries is $d_1 = 5$, $d_2 = 3$ and $d_3 = 4$, determine the equilibrium output levels for these three industries.

If X is the output vector ,then $X = D + AX \implies X = (I-A)^{-1}D$

$$\mathbf{I} - \mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 0.5 & 0 & 0.2 \\ 0.2 & 0.8 & 0.12 \\ 1 & 0.4 & 0 \end{pmatrix} = \begin{pmatrix} 0.5 & 0 & -0.2 \\ -0.2 & 0.2 & -0.12 \\ -1 & -0.4 & 1 \end{pmatrix}$$
$$(\mathbf{I} - \mathbf{A})^{-1} = \begin{pmatrix} 7.6 & 4 & 2 \\ 16 & 5 & 5 \\ 14 & 10 & 5 \end{pmatrix}; \mathbf{X} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{D} = \begin{pmatrix} 7.6 & 4 & 2 \\ 16 & 5 & 5 \\ 14 & 10 & 5 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 58 \\ 145 \\ 120 \end{pmatrix}$$

Therefore ,the necessary production amounts for the three commodities are 58, 145 and 120 units respectively.

Connectivity Matrices:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}; \text{ a}_{11} : \text{ roads from 1 to 1;} a_{12} : \text{ roads from 1 to 2 and}$$

so on

 $A^2 = AA$ (A multiplied by itself)gives the number of ways to travel between any two nodes by passing through exactly one other city Similarly, $A^3 = A^2A$ gives the number of ways to travel between any two nodes by passing exactly through two cities. $A + A^2$ gives the number of ways to travel between two nodes with at most one intermediate city.

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, http://www.gnu.org/copyleft/fdl.html Version 1.2 or any later version published by the Free Software Foundation.

Chapter 8 : Markov chains and Stochastic processes The Gambler's Ruin Gambler **A** has **\$ j**; Gambler **B** has **\$ N** –**j**; Total = **\$ N** between them Bet **\$1** at a time(timid strategy); Gambler **A** wins with probability **p**;Gambler **A** loses with probability q=1-p; *Case 1:* two absorbing barriers: Game ends when 0 or N is reached.

 $\left(\frac{q}{p}\right)^{j} - \left(\frac{q}{p}\right)^{n}$ if Pr(Reaching N before 0 : winning all) = $\mathbf{p} \neq \mathbf{q}$

$$= \frac{N-j}{N} \quad \text{if } \mathbf{p} =$$
Pr(Reaching 0 before N : loosing all)
$$= \frac{1 - \left(\frac{q}{p}\right)^{j}}{1 - \left(\frac{q}{p}\right)^{N}} \quad if \quad p \neq q$$

$$= \frac{j}{N}$$
 if $p = c$

;

q

Case 2 : One absorbing barrier at 0 :

$$Pr(winning all) = \begin{cases} \left(\frac{q}{p}\right)^{j} & \text{if } q
$$Pr(loosing all) = \begin{cases} \left(\frac{q}{p}\right)^{j} & \text{if } q$$$$

For daring strategy refer to Assignment #6, guestions 8 and 9. Gambler's ruin is a simple random walk :

Transition Diagram for

Gambler's Ruin

2

For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@uaemath.com</u> This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

Markov chains

 $\begin{array}{l} \mathsf{P}(X_{t+1} = s \mid X_t = s_t \; ; \; X_{t-1} = s_{t-1} \; ; ...; \; X_1 = s_1; \; X_0 = s_0) = \mathsf{P}(X_{t+1} = s \mid X_t = s_t) \\ \text{for all } t = 1; \; 2; \; 3; \; \; \text{ and for all states } s_0; \; s_1; \; \; ; \; \; s_t \; ; \; s. \\ \textbf{Properties of the Transition Matrix} \end{array}$

- 1. It is a square matrix (n x n)
- **2.** All entries are between **0** and **1**, inclusive, $0 \le p_{ij} \le 1$ because all entries represent probabilities.
- **3.** The sum of entries in any row must be **1** .
- **4.** Entry (i;j) is the conditional probability that **NEXT = j**, given

that **NOW** = $i : p_{ij} = P(X_{t+1} = j | X_t = i)$

5. P is the **one step** transition matrix and P^2 is the **two step**

transition matrix. In other words, the p_{12} entry in P^2 is the

probability of going from state1 to state 2 in two steps.

In general : $Pr(X_n = j | X_0 = i) = P_{ij}^n$

The probability that the chain is in state \mathbf{j} at time $\mathbf{t} = \mathbf{n}$ given that the

initial state(at time t = 0) is state $i = the ijth entry of P^n$

Important: The Meaning of the entries:

-Every entry represents moving from one state to another in **one step**.

- A step means a **time**, if $p_{12} = 0.2$ then this means it is possible to go from state 1 to state 2 at time **t** = **1** (in one step) with a probability of 0.2.
- Every entry represent a **direct path**, if $p_{21} = 0$, then this means it is **not** possible to go from state 2 to state 1 directly at **t** = **1**. However it **may** be possible to go from state 2 to state 1 in more than one step at t = 2,3,etc.

The Chapman-Kolmorgorove Equations

Suppose p^0 is the row vector of probabilities of the initial states(states at t = 0) p^n is the row vector of probabilities of the states at t = n ;then the general Markov chain at states n = 1,2,3,.... :

1.
$$p^n = p^0 p^n$$

2. If p^n tends to a limiting distribution π ; then $\pi P = \pi$

Markov Processes: These differ from Markov chains in one major aspect: time now

becomes a continuous quantity (i.e. now it is time as we know it), The

simplest example of a Markov process is the so called **Poisson**.

For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@uaemath.com</u> This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

The poisson process

It expresses the probability of a number of events occurring in a fixed time if these events occur with a known average rate, and are independent of the time since the last event. A number of discrete occurrences (sometimes called "arrivals") that take place during a time-interval of given length. The probability that there are exactly k occurrences is a poisson distribution of **rate** λ :

$$\mathsf{P}(\lambda) = \frac{e^{-\lambda}\lambda^k}{k!}$$

 λ is a positive real number, equal to the expected number of occurrences that occur during the given interval. For instance, if the events occur on average every 4 minutes, and you are interested in the number of events occurring in a 10 minute interval, you would use as model a Poisson distribution with $\lambda = 2.5$.

Examples: Calls arriving at a telephone exchange in a day.

The number of people joining a queue in an hour.

A stochastic process N(t); t ≥ 0 is a (time-homogeneous, one-dimensional) Poisson process if,

-The number of events occurring in two disjoint (**non-overlapping**) subintervals are independent random variables(*see No. 2 in the assumptions below*). Arrivals are *memoryless* i.e. independent of what has happened before.

 $-\Pr(k \text{ arrivals in time t}) = \Pr(\lambda t) = \frac{e^{-\lambda t} (\lambda t)^k}{k!};$

i.e. a Poisson distribution of parameter $\boldsymbol{\lambda}t$.

Assumptions of the Poisson process:

If {N(t) ; $t \ge 0$ } is poisson process of parameter λ then : 1. N(0) = 0 2. For any $t_0 = 0 < t_1 < t_2 < \dots < t_n$, the process increments N(t_1) - N(t_0) : the number of events in (0,t_1] N(t_2) - N(t_1) : the number of events in (t_1,t_2] etc..... are independent random variables.

- 3. The number of events occurring in the time interval (s , t +s] is a Poisson(λ t); i.e. Pr[N(s+t) N(s)] ~ P(λ t)
- 4. N(t) ~ P(λ t) ; i.e. Pr(k arrivals in time t) = P(λ t)

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

Example:

A company expects on average, four of its trucks will break down in a one-month Period.Assuming a Poisson distribution is appropriate, what is the probability that exactly four trucks break down in a month? in a two month period? If X is the number of trucks which break down in a month then as given

$$X \sim P(4) = \frac{e^{-\lambda}\lambda^k}{k!} = \frac{e^{-4}4^4}{4!} = 0.195$$
 i.e. 19.5 % of months would have 4 trucks

breakdown.

If the rate of breakdowns in a month is 4 ,then the rate of breakdowns in two months is 2x4 = 8; hence the No. of breakdowns in two months ~ P(8)

$$= \frac{e^{-\lambda}\lambda^k}{k!} = \frac{e^{-8}8^4}{4!} = 0.0572$$

Queuing Theory

Queuing Theory deals with systems of the following type:

Typically we are interested in how much queuing occurs or in the delays at the servers.

A standard notation is used in queuing theory to denote the type of system we are dealing with.

Typical examples are:

- M/M/1 Poisson Input/Poisson Server/1 Server
 - M/G/1 Poisson Input/General Server/1 Server
- D/G/n Deterministic Input/General Server/n Servers
 - E/G/∞ Erlangian Input/General Server/Infinite Servers

The *first* letter indicates the *input process*(**M** = **Memoryless** = **Poisson**), the *second* letter is the *server* process and the *number* is the **number of servers**.

The simplest queue is the M/M/1 queue

Memoryless=Poisson/Memoryless=Poisson/1 server

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

Chapter 9 : Applications of Calculus
Taylor's Expansion
The Taylor polynomial for the function f(x) about x=a is

$$f(x) = f(a) + \frac{x-a}{l!} f'(a) + \frac{(x-a)^2}{2!} f''(a) + \frac{(x-a)^3}{3!} f'''(a) + \dots$$
Maclaurin's Expansion
With $a = 0$, $f(x) = f(0) + \frac{x}{l!} f'(0) + \frac{x^2}{2!} f''(0) + \frac{x^3}{3!} f'''(0) + \dots$
Famous Expansions :
 $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$; $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$
 $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$; $\ln(a+x) = \ln a + \frac{x}{a} - \frac{x^2}{2a^2} + \frac{x^3}{3a^3}$ -.....
Deducing Expansions
 $e^{x} = 1 + (-x) + \frac{(-x)^2}{2!} + \frac{(-x)^3}{3!} + \dots = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots$
 $\cos x - 1 = -\frac{x^2}{2!} + \frac{x^4}{4!} - \dots$ Now replace the whole expansion of (cosx-1) by x in
the expansion of e^x :
 $e^{\cos x - 1} = 1 + (-\frac{x^2}{2!} + \frac{x^4}{4!} - \dots) + \frac{1}{2!}(-\frac{x^2}{2!} + \frac{x^4}{4!} - \dots)^2 + \frac{1}{4!}(-\frac{x^2}{2!} + \frac{x^4}{4!} - \dots)^4$
 $= 1 - \frac{x^2}{2!} + \frac{x^4}{6} + \dots$ (only up to x^4)
Note : for the square : find the first two terms only as in (a-b)^2 = a^2 - 2ab ;for the Cube and up
: cube only the first term. You can always take $e^{\cos x - 1}$ as new function and find its expansion.
Simpson's rule : is used to approximate definite integrals:
 $\int_a^b f(x) dx \approx \frac{h}{3} [f(a) + 4f(a + h) + 2f(a + 2h) + 4f(a + 3h) \dots + f(b)]$
FETO : Four times even ordinates ; two times odd ordinates.

Simpson's rule with **n** ordinates: $h = \frac{b-a}{n-l}$.

The result of Simpson's should be exactly equal to the result obtained by normal integration.

Consumers & Producers surpluses

$$CS = \int_{0}^{q} P^{D} dq - pq \quad ; \quad PS = pq - \int_{0}^{q} P^{S} dq$$

Where p and q are Equilibrium price and quantity respectively.

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

Chapter 10 : Optimization

Constrained Optimization:

Suppose f(x,y,z,...) has to be minimized or maximized subject to the constraint g(x,y,z,...) = 0.

1. Using substitution:

Example : Minimize $f = x^2 + 4y^2$ subject to the constraint x - y = 10Express one of the variables in terms of the others : y = x - 10Substitute in the objective function : $f = x^2 + 4(x - 10)^2 = 5x^2 - 80x + 400$ $f'(x) = 0 \Rightarrow 10x - 80 = 0 \Rightarrow x = 8 & y = x - 10 = -2$; (x,y) = (8, -2). When substitution is difficult to solve ,we use the method of

2. The Lagrange Multipliers:

1.)Set: L(x,y,z,.... λ) = f(x,y,z,...) - λ g(x,y,z,...)

2.)Find x and y as solutions of:

$$\frac{\partial L}{\partial x} = 0$$
, $\frac{\partial L}{\partial y} = 0$, $\frac{\partial L}{\partial z} = 0$,..., $\frac{\partial L}{\partial \lambda} = g(x,y,z,...) = 0$

Multiple constraints

Suppose f(x,y,z,...) has to be minimized or maximized subject to the constraint $g_1(x,y,z,...) = 0$, $g_2(x,y,z,...) = 0$, $g_3(x,y,z,...) = 0$,..... Then use :

$$L(x,y,z,...,\lambda) = f(x,y,z,...) - \lambda_1 g_1(x,y,z,...) - \lambda_2 g_2(x,y,z,...) -$$

$$\frac{\partial L}{\partial x} = 0 , \frac{\partial L}{\partial y} = 0 , \frac{\partial L}{\partial z} = 0, ..., \frac{\partial L}{\partial \lambda_1} = g_1(x, y, z, ...) = 0 , \frac{\partial L}{\partial \lambda_2} = g_2(x, y, z, ...) = 0 ,$$

Meaning of the multiplier

The Lagrange multiplier is an *artificial* variable added for *computational convenience*, suppose the optimum value is at the point P(x,y), the constraint function g(P) can be thought of as "competing" with the desired function f(P) to "pull" the point P to its minimum or maximum. The Lagrange multiplier λ can be thought of as a measure of how hard g(P) has to pull in order to make those "forces" balance out on the constraint surface.

Economic Interpretation

The economic interpretation of the multiplier as a 'shadow price'.

The values λ have an important economic interpretation: If the right hand side b of Constraint *i* is increased by Δ , then the optimum objective value increases by approximately $\lambda \Delta$.