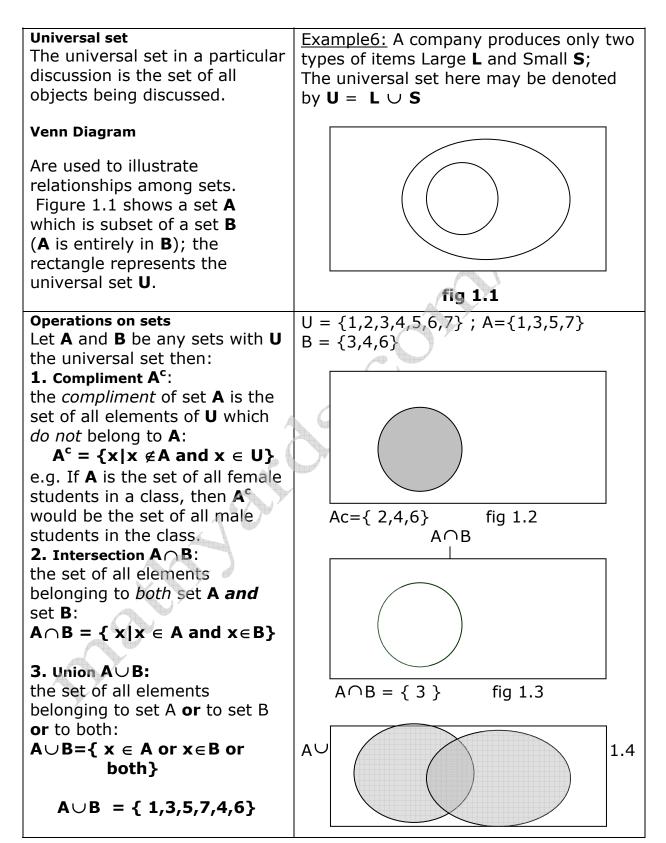
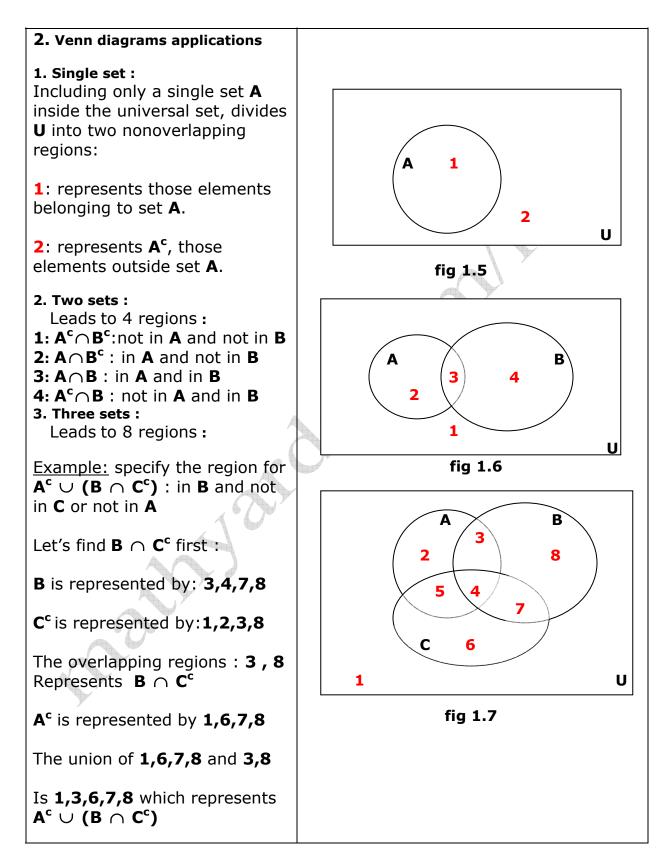
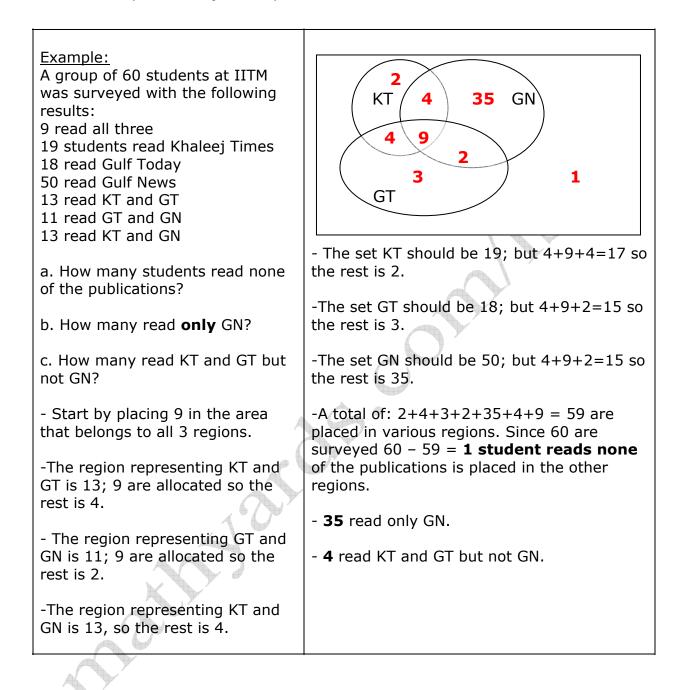
This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.


International Institute for Technology and Management


Unit 76: Management Mathematics



Set Theory Study Guide pp 5 – 11		
Торіс	Interpretation 👝	
Sets A set is a collection of objects. These objects are called <i>elements</i> of the set. Sets are represented by A , B , C , etc If A is a set and x is an element of A, we write: $x \in A$. $x \notin A$ means x is not an element of A. sets may be described by a common property of its elements rather than by a list of its elements: $\{x x \text{ has a property P}\}$ read: the set of all elements x such that x has property P. A set with no elements is called the <i>empty</i> set : ϕ . Subsets A set A is a <i>subset</i> of a set B (Written $A \subseteq B$) if every element of A is also an element of B . For any set A: 1. $\phi \subseteq A$; $A \subseteq A$ 2. A set of <i>n</i> distinct elements, has 2^n subsets. e.g. A set of 3 distinct elements has $2^3 = 8$ subsets	Example1: A = { 5,6,7} 5 ∈ A ; 8 ∉ A Example2: A={ x x is a natural number less than 5} A = { 1,2,3,4} Example3: the set passengers allowed to smoke in a non smoking flight is an empty set. 0, ϕ , {0} should be distinguished: 0: represents a number. ϕ : represents a set of no elements. {0}: represents a set with one element. a singleton set. Example4: A is the set of all small businesses with employees less than 20; B is the set of all businesses. Each business with employees less than 20 is also a business, so A ⊆ B Example5: List all subsets of { 1,5 ,6 } There are 8 subsets: ϕ , {1}, {5},{6} {1,5},{1,6},{5,6} {1,5,6}	

4. Related properties : 1. $\mathbf{A} \cap \mathbf{A}^{c} = \phi$ 2. $\mathbf{A} \cup \mathbf{A}^{c} = \mathbf{U}$ 3. $\phi^{c} = \mathbf{U}$; $\mathbf{U}^{c} = \phi$ 4. Demorgan's Theorems: a. $(\mathbf{A} \cap \mathbf{B})^{c} = \mathbf{A}^{c} \cup \mathbf{B}^{c}$ b. $(\mathbf{A} \cup \mathbf{B})^{c} = \mathbf{A}^{c} \cap \mathbf{B}^{c}$	 5. Order of a set the number of elements in a set A is called the <i>order</i> of A Written n(A) or A or n_A. 6. Union rule for counting n(A∪B)=n(A) + n(B)- n(A ∩ B)
Applications1. Interpreting statements in set notation:A good approach is to explain this by examples: $Example1$:Let M: the set of all students in IITM taking the management Math. course.A: all students taking accounting.S: All students taking statistics. Interpret each of the following statements in set notation: a. All students taking management math or accounting or statistics: $\mathbf{M} \cup \mathbf{A} \cup \mathbf{S} = \mathbf{U}$ \mathbf{U} is the set of all students at IITM serves as Universal. b. T: All students taking accounting and statistics: $\mathbf{T} \subseteq \mathbf{A} \cap \mathbf{S}$ c. N:All students not taking management math. $\mathbf{N} \subseteq \mathbf{M}^c$ d. R:All students not taking accounting and not taking statistics: $\mathbf{R} \subseteq \mathbf{A}^c \cap \mathbf{S}^c$	Recall that :Union means orIntersection means andCompliment means notExample2:A department store classifies creditapplicants by sex , marital status andemployment status:M: the set of male applicants.S: the set of single applicants.E: the set of employed applicants.E: the set of employed applicants.Describe the following sets in words:a. $M \cap E$: male and employedThe set of all male employedThe set of all single femaleapplicants.b. $M^c \cap S$: not male and singleThe set of all female or marriedapplicants.d. $M \cap E = \phi$ The set of unemployed males.

