International Institute for Technology and Management

Tutoring Sheet #5 - Solution

Unit 76: Management Mathematics – Difference Equations

1. Solve the following Difference Equations:

a.
$$y_t = 3 y_{t-1} + 4$$
; $y_0 = 2$; $y_t = 3^t y_0 + 4(\frac{1-3^t}{1-3}) = 2(3^t) - 2(1-3^t)$

b.
$$y_{t+3} = 2 y_{t+2} - 5$$
; $y_t = 2^{t-2} y_2 - 5(\frac{1 - 2^{t-2}}{1 - 2}) = 2^{t-2} y_2 + 5(1 - 2^{t-2})$

c.
$$y_{t+1} = y_t + 13$$
; $y_0 = 5$; $y_t = y_0 + 13t = 5 + 13t$

2. Solve the following difference equations and describe the solution series:

a.
$$y_{t+2}$$
 - y_{t+1} - $2y_t$ = 3 with y_0 = 2; y_1 = 2
The auxiliary equation: r^2 - r - 2 = 0 \Rightarrow (r + 1) (r - 2) = 0 r = -1; r = 2 two distinct real roots.

The complementary function : $y_c = A(-1)^t + B(2)^t$ The equation has the form : $y_{t+2} + ay_{t+1} + by_t = 0$ Where $a + b = -1 - 2 = -3 \neq -1$

For a particular solution ,
$$y_p = \frac{c}{1+a+b} = -3/2$$

The general solution : $y_t = y_c + y_p = A(-1)^t + B(2)^t - 3/2$ Now use $y_0=2$, $y_1=2$ to find A and B $y_0=2 \Rightarrow A(-1)^0 + B(2)^0 - 3/2 = 2 \Rightarrow A + B = 7/2$ $y_1=2 \Rightarrow A(-1)^1 + B(2)^1 - 3/2 = 2 \Rightarrow -A + 2B = 7/2$ Solving for A and B simultaneously: A = 7/6; B = 7/3

The general solution : $y_t = (7/6)(-1)^t + (7/3)(2)^t - 3/2$

b.
$$4y_{t+2} + 4y_{t+1} + y_t = 2+3t$$
 with $y_1 = 1$; $y_2 = 2$
The auxiliary equation : $4r^2 + 4r + 1 = 0 \Rightarrow (2r + 1)(2r + 1) = 0$ $r = -1/2$ two equal real roots.

The complementary function : $y_c = (A + Bt)(-1/2)^t$ For a particular solution , $y_p = C + Dt$ substitute this in the original Equation : $4y_{t+2} + 4y_{t+1} + y_t = 2 + 3t$ \Rightarrow 4[C + D(t+2)] + 4[C + D(t+1)] + C + Dt = 2 + 3t

$$\Rightarrow$$
 (4D + 4D + D)t + 4C + 4C + C+8D+4D = 2 + 3t

 \Rightarrow 9Dt + 9C +12D = 2 + 3t equating coefficients of t and the constant terms: 9D = 3; D = 1/3; 9C + 12(1/3) = 1; C = -3Hence $y_p = (1/3)t - 3$

The general solution : $y_t = y_c + y_p = (A + Bt)(-1/2)^t + (1/3)t - 3$ Now use $y_1=1$, $y_2=2$ to find A and B:

$$y_1=1 \Rightarrow (A + B(1))(-1/2)^1 + (1/3)(1) - 3 = 1 \Rightarrow (A+B)(-1/2) = 11/3$$

 $y_2=2 \Rightarrow \Rightarrow (A + B(2))(-1/2)^2 + (1/3)(2) - 3 = 2 \Rightarrow A/4 + B/2 = 13/3$
Solving for A and B simultaneously: $A = -32$; $B = 74/3$

The general solution : $y_t = (-32 + (74/3)t)(-1/2)^t + (1/3)t - 3$

c.
$$y_t + 4y_{t-2} = 15$$
 with $y_0 = 12$; $y_1 = 11$

The auxiliary roots : $r^2 + 4 = 0 \Rightarrow r = -2i$, r = +2i

The complementary function: $y_c = (\sqrt{4})^t (A\cos\alpha t + B\sin\alpha t)$

$$\alpha = \cos^{-1}(\frac{-a}{2\sqrt{b}}) = \cos^{-1}(0) = \frac{\pi}{2}$$
; $y_t = 2^t (A\cos\frac{\pi}{2}t + B\sin\frac{\pi}{2}t)$

The equation has the form : $y_t + ay_{t-1} + by_{t-2} = 0$ Where $a + b = 0 + 4 = 4 \neq -1$

For a particular solution ,
$$y_p = \frac{c}{1+a+b} = 3$$

The general solution: $\mathbf{y_t} = \mathbf{y_c} + \mathbf{y_p} = 2^t (A\cos\frac{\pi}{2}t + B\sin\frac{\pi}{2}t) + 3$

$$y_0 = 12 \Rightarrow 2^0 (A\cos 0 + B\sin 0) + 3 = 12 \Rightarrow A + 3 = 12 \Rightarrow A = 9$$

$$y_1 = 11 \Rightarrow 2^1 (A\cos\frac{\pi}{2} + B\sin\frac{\pi}{2}) + 3 = 11 \Rightarrow 2B + 3 = 0 \Rightarrow B = -3/2$$

The general solution:

$$\mathbf{y_t} = 2^t (9\cos\frac{\pi}{2}t - \frac{3}{2}\sin\frac{\pi}{2}t) + 3$$

d.
$$y_{t+2}$$
 +4 y_{t+1} + 5 y_t = 20

The auxiliary equation: $r^2 + 4r + 5 = 0 \implies 2$ complex roots $-2 \pm 4i$

The complementary function: $y_c = (\sqrt{5})^t (A\cos\alpha t + B\sin\alpha t)$

$$\alpha = \cos^{-1}(\frac{-a}{2\sqrt{b}}) = \cos^{-1}(\frac{-4}{2\sqrt{5}}) = 153.43^{\circ} \times \frac{\pi}{180} = 0.85\pi$$

;
$$y_t = (\sqrt{5})^t (A\cos 0.85\pi t + B\sin 0.85\pi t)$$

The equation has the form : $y_{t+2} + ay_{t+1} + by_t = 0$ Where $a + b = 4 + 5 = 9 \neq -1$

For a particular solution ,
$$y_p = \frac{c}{1+a+b} = 2$$

The general solution: $y_t = y_c + y_p$

$$\mathbf{y_t} = (\sqrt{5})^t (A\cos 0.85\pi t + B\sin 0.85\pi t) + 2$$

e.
$$y_t + 4y_{t-2} = 13 - 5t$$
 with $y_0 = 6$; $y_1 = 8$

The auxiliary roots : $r^2 + 4 = 0 \Rightarrow r = -2i$, r = +2i

The complementary function: $y_c = (\sqrt{4})^t (A\cos\alpha t + B\sin\alpha t)$

$$\alpha = \cos^{-1}(\frac{-a}{2\sqrt{b}}) = \cos^{-1}(0) = \frac{\pi}{2}$$
; $y_t = 2^t (A\cos\frac{\pi}{2}t + B\sin\frac{\pi}{2}t)$

For a particular solution , $y_p = C + Dt$ substitute this in the original Equation : $y_t + 4y_{t-2} = 13 - 5t$

C+Dt + 4[C+D(t-2)] = 13 -5t
$$\Rightarrow$$
 5Dt +5C - 8D = 13 -5t \Rightarrow D = -1; C =1 \Rightarrow y₀ = 1 - t

The general solution: $\mathbf{y_t} = \mathbf{y_c} + \mathbf{y_p} = 2^t (A\cos\frac{\pi}{2}t + B\sin\frac{\pi}{2}t) + 1 - t$

$$y_0 = 6 \Rightarrow 2^0 (A\cos 0 + B\sin 0) + 1 - 0 = 12 \Rightarrow A + 1 = 6 \Rightarrow A = 5$$

$$y_1 = 8 \Rightarrow 2^1 (A\cos\frac{\pi}{2} + B\sin\frac{\pi}{2}) + 1 - 1 = 11 \Rightarrow 2B = 11 \Rightarrow B = 11/2$$

The general solution:

$$\mathbf{y_t} = 2^t (5\cos\frac{\pi}{2}t - \frac{11}{2}\sin\frac{\pi}{2}t) + 1 - t$$

3. Consider the following difference equation:

$$y_t + 4y_{t-2} = 22 + 5t$$
 with $y_0 = 1$; $y_1 = 3$

Solve the above difference equation for y ,graph the Solution and describe the graph in words.

The auxiliary roots : $r^2 + 4 = 0 \Rightarrow r = -2i$, r = +2i

The complementary function: $y_c = (\sqrt{4})^t (A\cos\alpha t + B\sin\alpha t)$

$$\alpha = \cos^{-1}(\frac{-a}{2\sqrt{b}}) = \cos^{-1}(0) = \frac{\pi}{2}$$
; $y_t = 2^t (A\cos\frac{\pi}{2}t + B\sin\frac{\pi}{2}t)$

For a particular solution , $y_p = C + Dt$ substitute this in the original Equation : $y_t + 4y_{t-2} = 13 - 5t$

C+Dt + 4[C+D(t-2)] = 22 +5t
$$\Rightarrow$$
5Dt +5C - 8D = 22 +5t
 \Rightarrow D = 1; C = 6 \Rightarrow y_p = 6 + t

The general solution: $\mathbf{y_t} = \mathbf{y_c} + \mathbf{y_p} = 2^t (A\cos\frac{\pi}{2}t + B\sin\frac{\pi}{2}t) + 6 + t$

$$y_0 = 1 \Rightarrow 2^0 (A\cos 0 + B\sin 0) + 6 + 0 = 1 \Rightarrow A + 6 = 1 \Rightarrow A = -5$$

$$y_1 = 3 \Rightarrow 2^1 \left(A\cos\frac{\pi}{2} + B\sin\frac{\pi}{2}\right) + 6 + 1 = 3 \Rightarrow 2B + 7 = 3 \Rightarrow B = -3$$

The general solution:

$$\mathbf{y_t} = 2^t (-5\cos\frac{\pi}{2}t - 3\sin\frac{\pi}{2}t) + 6 + t$$