International Institute for Technology and Management

Tutoring Sheet #15

Mathematics 1 Unit 05a :

HomeWork to be submitted: # 1:a,b,c,f,3,4

1. Find the partial derivatives and the second partial derivatives of the following functions:

a.
$$f(x,y) = x^2y + xy^3$$

a.
$$f(x,y) = x^2y + xy^3$$
 b. $f(x,y) = x^3y - \frac{x}{y}$ c. $f(x,y) = x + \sqrt{y}$

c.
$$f(x,y) = x + \sqrt{y}$$

d.
$$f(x,y) = x^{\frac{3}{4}}y^{\frac{1}{4}}$$

d.
$$f(x,y) = x^{\frac{3}{4}}y^{\frac{1}{4}}$$
 e. $f(x,y) = x^2(x^2 + y^3)^{\frac{2}{3}}$ f. $f(x,y) = 5x^{\frac{2}{3}}y^{\frac{1}{4}}$

f.
$$f(x,y) = 5x^{\frac{2}{3}}y^{\frac{1}{4}}$$

2. The function f is given by : $f(x,y) = x^{-y}$ for x > 0 (LSE 2004) Find partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial v}$ (Note that: $\mathbf{x}^{-\mathbf{y}} = e^{-y \ln x}$)

3. The function f is given by : $f(x,y) = 2^{x^2y}$ for x > 0 (LSE 2004) Find the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$

4. The function f is given by : $f(x,y) = \left(\frac{x-y}{x+y}\right)^n$ where n > 0

Find the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial v}$ (LSE 2003)

5. The function f is given by : $f(x,y) = \frac{x^2}{v} + \frac{\sqrt{x^4 + y^4}}{x + v}$ (LSE 2003)

Find the partial derivatives of f and show that $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = f(x,y)$