International Institute for Technology and Management

November 2008

Unit: 05a – Mathematics 1

GROUP(A)-VERSION A

This paper is not to be removed from the Examination Halls

Student Name :

Student Number :

TIME ALLOWED: 2 hours

Candidates should answer **NINE** of the following **ELEVEN** questions: **SEVEN** from section A (60 marks in total) and **TWO** from section B (20 marks each).

Candidates are strongly advised to divide their time accordingly.

Graph paper is provided at the student request.

Calculators May NOT be used for this paper.

PLEASE TURN OVER

SECTION A

Answer all **SEVEN** questions from this section (60 marks in total)

1. The functions f(x) and g(x) are:

$$f(x) = 2x^2 + x - 10 , g(x) = 7 - 3x^2 - 4x$$

Sketch the graphs of f and g, and determine the x-coordinates of their points of intersection.

 $f(x) = 2x^2 + x - 10$

-It should be realized that f(x) has a parabolic U shape since it has a positive x^2 term.

-An accurate sketch will need to indicate where the curve cuts the axes:

6

$$\frac{x \text{-intercepts}}{\text{This can be solved using the quadratic formula:}} x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1 - 4(2)(-10)}}{2(2)}$$
$$x = \frac{-1 \pm \sqrt{81}}{4} = \frac{-1 \pm 9}{4} \text{ and the x-intercepts are:}$$
$$(-5/2,0) \text{ and } (2,0)$$
$$\frac{y \text{-intercept}:}{2} x = 0 \implies y = -10 \quad \therefore \quad (0, -10)$$

- An accurate sketch will need to show the minimum of the graph of f(x), we know it's a minimum from the U shape. The minimum can be found in one of two ways : By differentiation : $f(x) = 2x^2 + x - 10 \implies f'(x) = 4x + 1 = 0$ $\implies x = -\frac{1}{4}$, substituting this in f(x), $y = 2(-1/4)^2 + (-1/4) - 10$ $= -162/16 = -\frac{81}{8}$ $\therefore V(-1/4, -\frac{81}{8})$ OR by finding the vertex : $x = \frac{-b}{2a} = \frac{-1}{2(2)} = \frac{-1}{4}$

Now you can Sketch the graph of f(x):

-You know it has a U shape

- You know the intercepts with the axes: (5/20) (20)

 $(-5/2,0)_{and}(2,0)_{and}(0,-10)$ -You know the Vertex (minimum) : (-1/4, -81/8)

OR by finding the vertex :
$$x = \frac{-b}{2a} = \frac{4}{2(-3)} = \frac{-2}{3}$$

Now you can Sketch the graph of g(x): -You know it has a \cap shape - You know the intercepts with the axes: (-7/3,0) and (1,0)and (0,7) -You know the Vertex (maximum) : (-2/3, 25/3) Intersection points: $2x^{2} + x - 10 = -3x^{2} - 4x + 7$ \Rightarrow 5x² + 5x - 17 = 0 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-5 \pm \sqrt{25 - 4(5)(-17)}}{2(5)}$ $x = \frac{-5 \pm \sqrt{365}}{10}$ 2 2. Find the maximum value of the function: $f(x) = (1+x)e^{4}$ Show that it is indeed a maximum. $f'(x) = (1)e^{-x/4} - \frac{1}{4}(1+x)e^{-x/4} = (1-\frac{1}{4}-\frac{x}{4})e^{-x/4}$ $f'(x) = 0 \implies (\sqrt[3]{4} - x/4) e^{-x/4} = 0$ but $e^{-x/4} \neq 0$ \Rightarrow ³/₄ - x/4 = 0 \Rightarrow x = 3 $f''(x) = -\frac{1}{4} e^{-x/4} - \frac{1}{4} (\frac{3}{4} - x/4) e^{-x/4} = (-7/16 + x/16) e^{-x/4}$ at x = 3, f''(3) = (-7/16 + 3/16) e^{-3/4} = -4/16 e^{-3/4} = -\frac{1}{4} e^{-3/4} < 0 \Rightarrow x = 3 maximises f(x). The maximum is obtained by finding f(3)8 $f(3) = 4 e^{-3/4}$ $\int \frac{\cos(\ln x)}{dx} dx$ Determine the following integrals 3. 4 Let $u = \ln x \implies du = dx/x$, becomes $\int cosu \, du = sin u + C = sin(\ln x) + C$ $\int x^3 \sqrt{4x^2 + l} \, dx \text{ Let } \mathbf{u} = 4\mathbf{x}^2 + 1 \Rightarrow \mathbf{du} = 8\mathbf{x} \, \mathbf{dx} \Rightarrow \mathbf{dx} = \frac{du}{8x}$ $\int x^{3} \sqrt{4x^{2} + 1} \, dx = \int x^{3} \sqrt{u} \frac{du}{g_{v}} = \int x^{2} \sqrt{u} \, \frac{du}{g} = \frac{1}{g} \int x^{2} \sqrt{u} \, du$ But $u = 4x^2 + 1 \Rightarrow x^2 = (u - 1)/4$ $=\frac{1}{32}\int (u-1)(u)^{\frac{1}{2}}du = \frac{1}{32}\int (u^{\frac{3}{2}}-u^{\frac{1}{2}})du = \frac{1}{32}\frac{u^{\frac{5}{2}}}{\frac{5}{2}} - \frac{1}{2}\frac{u^{\frac{5}{2}}}{\frac{3}{2}} + \mathbf{C}$ $=\frac{u^{\frac{5}{2}}}{20}-\frac{u^{\frac{3}{2}}}{40}+C=\frac{(4x^2+1)^{\frac{5}{2}}}{20}-\frac{(4x^2+1)^{\frac{3}{2}}}{40}+C$ 6 4

4. A firm has average variable cost

AVC =
$$2q^2 + 5q + \frac{\ln(q^3 + 2)}{q}$$

and fixed costs of 4. Find the total cost function and the marginal cost function.

VC = q x AVC =
$$2q^3 + 5q^2 + \ln(q^3 + 2)$$

TC = VC + FC = $2q^3 + 5q^2 + \ln(q^3 + 2) + 4$
MC = $\frac{d}{dq}TC$ = $6q^2 + 10q + \frac{3q^2}{q^3 + 2}$ 3

5. The marginal cost is a function of output as follows :

MC = $10 - q + q^2$ Determine the extra cost which is incurred when production is increased from 2 to 4. The increase is TC(4) - TC(2) = $\int_{-1}^{4} MC \, dq$ 6

$$= \int_{2}^{4} (10 - q + q^{2}) dq = 10q - \frac{q^{2}}{2} + \frac{q^{3}}{3} \Big|_{2}^{4}$$
$$= [10(4) - 8 + 64/3] - [20 - 2 + 8/3] = 160/3 - 62/3 = 98/3$$

6. Find the positive number a which is such that $\int_{1}^{a} \left(1 + \frac{2}{x^{2}}\right) dx = 2$

$$\int_{1}^{a} (1+2x^{-2})dx = 2 \Rightarrow \left(x + \frac{2x^{-2+1}}{-2+1}\right)_{1}^{a} = 2 \Rightarrow \left(x - \frac{2}{x}\right)_{1}^{a} = 2$$
$$\Rightarrow \left(a - \frac{2}{a}\right) - \left(1 - \frac{2}{1}\right) = 2 \Rightarrow a - \frac{2}{a} + 1 = 2 \Rightarrow a^{2} - a - 2 = 0$$
$$6$$

7. Determine the following integrals

$$\int \frac{2\sqrt{x}+1}{\sqrt{x}(x+\sqrt{x}-2)} dx \quad u = x + \sqrt{x} - 2 \Rightarrow du = (1 + \frac{1}{2\sqrt{x}}) dx$$
$$du = \frac{2\sqrt{x}+1}{2\sqrt{x}} dx \Rightarrow \frac{2\sqrt{x}+1}{\sqrt{x}} dx = 2du \text{ the integral becomes}$$
$$\int \frac{2du}{u} = 2\ln|u| + C = 2\ln|x+\sqrt{x}-2| + C \qquad 5$$

$$\int \frac{\cos x dx}{\sin^2 x + 2 \sin x + 1} \quad u = \sin x \Longrightarrow du = \cos x dx$$

= $\int \frac{du}{u^2 + 2u + 1} = \int \frac{du}{(u + 1)^2} = \int (u + 2)^{-2} du$
= $\frac{(u + 1)^{-1}}{-1} + C = \frac{-1}{u + 1} + C = \frac{-1}{\sin x + 1} + C$ 5

SECTION B

Answer TWO questions from this section (20 marks each)

- 8. (a) A monopoly has fixed costs of 10 and marginal cost function 3q²+4. the demand equation for its product is p+q =20. Determine the profit function in terms of q. Determine also the production level that maximises the profit.
 - (a) $TC = \int MCdq = \int (3q^2 + 4)dq = q^3 + 4q + C$

$$FC = TC(0) = 10 \implies 0 + 0 + C = 10$$
, $C = 10$

TC = q³ + 4q + 10
TR = pq , but p + q = 20
$$\Rightarrow$$
 p = 20 - q
TR = (20 - q)q = 20q - q²
 π = TR - TC = 20q - q² - q³ - 4q - 10 = -q³ - q² + 16q - 10
 $\pi' = -3q^{2} - 2q + 16 = 0$
q = $\frac{2 \pm \sqrt{4 - 4(-3)(16)}}{2(-3)} = \frac{2 \pm \sqrt{196}}{-6} = \frac{2 \pm 14}{-6}$
 \Rightarrow q = -16/6 rejected , q = 2
 $\pi'' = -6q - 2$ and $\pi''(2) = -14 < 0$
 \Rightarrow q = 2 maximizes the profit and the maximum profit is
 $\pi(2) = -8 - 4 + 32 - 10 = 10$
(b) Determine the following integrals
 $\int \sin^{2} x \cos^{5} x dx = \int \sin^{2} x \cos^{4} x \cos x dx$
 $u = \sin x \Rightarrow du = \cos x dx$, the integral becomes
 $\int \sin^{2} x (\cos^{2} x)^{2} du = \int u^{2} (1 - 2u^{2} + u^{4}) du$
 $= \int (u^{2} - 2u^{4} + u^{6}) du = \frac{u^{3}}{3} - 2\frac{u^{5}}{4} + \frac{u^{7}}{7} + C$
 $= \frac{\sin^{3} x}{3} - \frac{2\sin^{5} x}{5} + \frac{\sin^{7} x}{7} + C$

$$\int \frac{e^{x} dx}{\sqrt{e^{x} + 1}} \quad u = e^{x} + 1 \implies du = e^{x} dx$$
$$= \int \frac{du}{\sqrt{u}} = \int u^{-1/2} du = 2\sqrt{u} + C = 2\sqrt{e^{x} + 1} + C \quad \boxed{4}$$

9. (a) A monopoly has fixed costs of 10 and Average variable cost function q²+4. the demand equation for its product is p+q =20. Determine the profit function in terms of q. Determine also the production level that maximises the profit.

VC = q x AVC = q(q² + 4) = q³ + 4q
TC = VC + FC = q³ + 4q + 10
TR = pq , but p + q = 20
$$\implies$$
 p = 20 - q
TR = (20 - q)q = 20q - q²
 π = TR - TC = 20q - q² - q³ - 4q = -q³ - q² + 16q
 π' = -3q² - 2q + 16 = 0
q = $\frac{2 \pm \sqrt{4 - 4(-3)(16)}}{2(-3)} = \frac{2 \pm \sqrt{196}}{-6} = \frac{2 \pm 14}{-6}$
 \implies q = -16/6 rejected , q = 2
 π'' = -6q - 2 and $\pi''(2) = -14 < 0$
 \implies q = 2 maximizes the profit and the maximum profit is
 π (2) = -8 - 4 + 32 = 20

(b) Find the critical points of the function and specify their nature:

$$f(x) = x^{4} - 8x^{3} - 80x^{2} + 15$$

$$f^{*}(x) = 4x^{3} - 24x^{2} - 160x = 0 \implies 4x(x^{2} - 6x - 40) = 0$$

$$x = 0, x^{2} - 6x - 40 = 0 \implies x = \frac{6 \pm \sqrt{196}}{2} = \frac{6 \pm 14}{2}$$

$$x = 10, x = -4$$

$$f''(x) = 12x^{2} - 48x - 160$$
at x = 0, f''(0) = -160 < 0, maximum : (0, 15)
at x = 10, f''(10) = 560 > 0, minimum : (10, -5985)
at x = -4, f''(-4) = 224 > 0, minimum : (-4, -497)

10.(a) A firm's marginal revenue function is MR = 11 - qThe firm's marginal cost function is $MC = 3q^2 + 36q - 36$ where q is either the quantity sold or produced. Find the value of q which maximises the profit. Determine the maximum profit and verify that it is a maximum. $TC = \int (3q^2 + 36q - 36)dq = q^3 + 18q^2 - 36q + C$ $TR = \int (11 - q)dq = 11q - q^2/2$ $\pi = TR - TC = 11q - q^2/2 - q^3 - 18q^2 + 36q - C$ $\pi = -q^3 - (37/2)q^2 + 47q - C \Rightarrow \pi' = -3q^2 - 37q + 47 = 0$

$$\Rightarrow 3q^{2} + 37q - 47 = 0$$

$$q = \frac{-37 \pm \sqrt{37^{2} - 4(3)(-47)}}{2(3)} = \frac{-37 \pm \sqrt{1933}}{6}$$

$$q = \frac{-37 - \sqrt{1933}}{6} \text{ which is economically not feasible,}
q = \frac{-37 + \sqrt{1933}}{6} (\sqrt{1933} \approx 44)$$

$$\pi^{*} = -6q - 37 = -2(\frac{-37 + \sqrt{1933}}{6}) - 37 < 0,$$

$$q = \frac{-37 + \sqrt{1933}}{6} \text{ maximises the profit}$$
Another method
MR = MC , 11 - q = 3q² + 36q - 36 \Rightarrow 3q² + 37q - 47 = 0
(b) Show that : $\frac{2x^2 - 3x + 4}{x - 1} = 2x - 1 + \frac{3}{x - 1}$
 $2x - 1 + \frac{3}{x - 1} = \frac{(2x - 1)(x - 1) + 3}{x - 1} = \frac{2x^2 - 3x + 4}{x - 1}$
Then find : $\int \frac{2x^2 - 3x + 4}{x - 1} dx = \int (2x - 1 + \frac{3}{x - 1}) dx$
 $= x^2 - x + 3\ln|x - 1| + C$
10

(i) Determine the firm's average cost (AC) and marginal

cost (MC) functions.

$$AC = \frac{TC}{q} = \frac{20}{q} + 5 + 5q \qquad [$$

$$MC = TC' = 5 + 10q$$

(ii) Find the quantity that minimises the Average cost and the value of this minimum. Show indeed it is a minimum.

4

AC' =
$$\frac{-20}{q^2}$$
 + 5 = $\frac{5q^2 - 20}{q^2}$
AC' = 0 \Rightarrow 5q² - 20 = 0 \Rightarrow q² = 4 \Rightarrow q = -2 (rejected)
or q = 2

