International Institute for Technology and Management

November 2008

Unit: 05a – Mathematics 1

GROUP(A)-VERSION A

This paper is not to be removed from the Examination Halls

Student Name :

Student Number :

TIME ALLOWED: 2 hours

Candidates should answer **NINE** of the following **ELEVEN** questions: **SEVEN** from section A (60 marks in total) and **TWO** from section B (20 marks each).

Candidates are strongly advised to divide their time accordingly.

Graph paper is provided at the student request.

Calculators May NOT be used for this paper.

PLEASE TURN OVER

SECTION A

Answer all **SEVEN** questions from this section (60 marks in total)

1. The functions f(x) and g(x) are:

$$f(x) = 2x^2 + x - 10 , g(x) = 7 - 3x^2 - 4x$$

Sketch the graphs of f and g, and determine the x-coordinates of their points of intersection.

2. Find the maximum value of the function:

$$f(x) = (1+x)e^{\frac{-x}{4}}$$

Show that it is indeed a maximum.

3. Determine the following integrals

$$\int \frac{\cos(\ln x)}{x} dx \quad , \ \int x^3 \sqrt{4x^2 + 1} dx$$

4. A firm has average variable cost

$$2q^2 + 5q + \frac{\ln(q^3 + 2)}{q}$$

and fixed costs of 4. Find the total cost function and the marginal cost function.

5. The marginal cost is a function of output as follows :

 $MC = 10 - q + q^2$

Determine the extra cost which is incurred when production is increased from 2 to 4 .

6. Find the positive number a which is such that

$$\int_{1}^{a} \left(1 + \frac{2}{x^2}\right) dx = 2$$

7. Determine the following integrals

$$\int \frac{2\sqrt{x+1}}{\sqrt{x}(x+\sqrt{x}-2)} dx \quad , \quad \int \frac{\cos x dx}{\sin^2 x+2\sin x+1}$$

SECTION B

Answer **TWO** questions from this section (20 marks each)

- 8. (a) A monopoly has fixed costs of 10 and marginal cost function 3q²+4 .the demand equation for its product is p+q =20.Determine the profit function in terms of q. Determine also the production level that maximises the profit.
 - (b) Determine the following integrals

$$\int \sin^2 x \cos^5 x dx \quad , \quad \int \frac{e^x dx}{\sqrt{e^x + 1}}$$

- 9. (a) A monopoly has fixed costs of 10 and Average variable cost function q²+4. the demand equation for its product is p+q =20. Determine the profit function in terms of q. Determine also the production level that maximises the profit.
 - (b) Find the critical points of the function and specify their nature:

$$f(x) = x^4 - 8x^3 - 80x^2 + 15$$

 10.(a) A firm's marginal revenue function is MR=11 - q The firm's marginal cost function is MC = 3q² + 36q - 36 where q is either the quantity sold or produced. Find the value of q which maximises the profit. Determine the maximum profit and verify that it is a maximum.

(b) Show that :
$$\frac{2x^2 - 3x + 4}{x - 1} = 2x - 1 + \frac{3}{x - 1}$$

Then find : $\int \frac{2x^2 - 3x + 4}{x - 1} \, dx$

- **11**.A firm faces a total cost function $TC = 20 + 5q + 5q^2$
 - (i) Determine the firm's average cost (AC) and marginal cost (MC) functions.
 - (ii) Find the quantity that minimises the Average cost and the value of this minimum. Show indeed it is a minimum.
 - (iii) Verify that when q = 2, the marginal cost MC equals the

Average cost.

(iv) Sketch the graphs of the total cost TC and the marginal cost MC functions on the same system of axes.

END OF PAPER