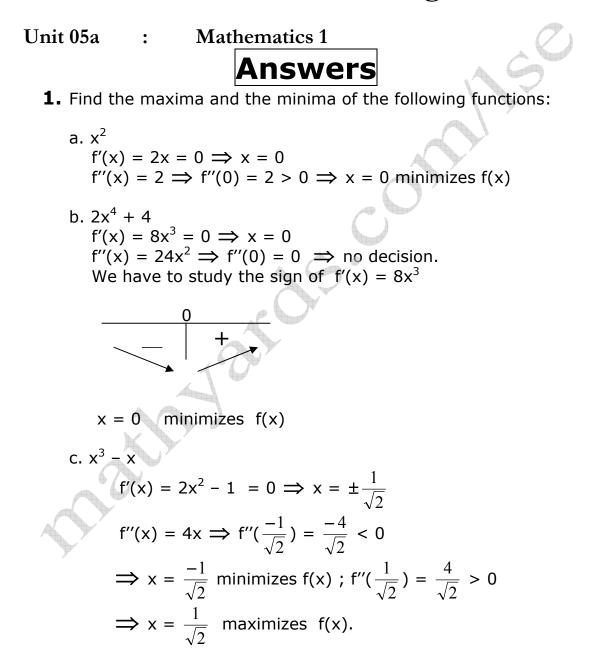
International Institute for Technology and Management

Oct 7th ,2004

Tutoring Sheet #8



For comments, corrections, etc...Please contact Ahnaf Abbas: ahnaf@uaemath.com

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

- d. $x^2 + 2x + 1$ $f'(x) = 2x+2 = 0 \implies x = -1$ $f''(x) = 2 \implies f''(-1) = 2 > 0 \implies x = -1$ minimizes f(x)
- e. $2 + 4x x^2$ $f'(x) = 4 - 2x = 0 \implies x = 2$ $f''(x) = -2 \implies f''(2) = -2 < 0 \implies x = 2$ maximizes f(x)
- f. $2x^3 15x^2 + 36x + 4$ $f'(x) = 6x^2 - 30x + 36 = 0 \implies (6x - 12)(x - 3) = 0$ $\implies x = 2 \text{ or } x = 3$ $f''(x) = 12x - 30 \implies f''(2) = -6 < 0 \implies x = 2 \text{ maximizes } f(x)$ $f''(3) = 6 > 0 \implies x = 3 \text{ minimises } f(x).$
- **2.** Find the maxima and the minima of the following functions: $a.2x^2 + 4$ $f'(x) = 4x = 0 \implies x = 0$ $f''(x) = 4 \implies f''(0) = 4 > 0$ \Rightarrow x = 0 minimizes f(x) b. 5 - $3x^2$ $f'(x) = -6x = 0 \implies x = 0$ $f''(x) = -6 \implies f''(0) = -6 < 0$ \Rightarrow x = 0 maximizes f(x) c. $2x^3 - 9x^2 - 24x + 10$ $f'(x) = 6x^2 - 18x - 24 = 0 \implies x = -1$ or x = 4f''(x) = 12x - 18 \Rightarrow f''(-1) = -30 < 0 \Rightarrow x = 0 maximize $f'(4) = 30 > 0 \implies x = 0$ minimizes f(x) $d.4\sqrt{x} - x$ $f'(x) = \frac{4}{2\sqrt{x}} - 1 = 0 \implies x = 4$ $f''(x) = \frac{-1}{x\sqrt{x}}$, $f''(x) = \frac{-1}{8} < 0$ (Max)

e.
$$\frac{3x}{x^2 + 1}$$

f'(x) = $\frac{3(x^2 + 1) - (2x)(3x)}{(x^2 + 1)^2}$
f'(x) = $\frac{-3x^2 + 3}{(x^2 + 1)^2} = 0 \implies -3x^2 + 3 = 0 \implies x = -1 \text{ or } x = -1$
f''(x) = $\frac{(-6x)(x^2 + 1)^2 - (-3x^2 + 3)(2x)(x^2 + 1))}{(x^2 + 1)^4}$

$$f''(-1) = \frac{6(4) - 0}{16} > 0 \implies -1$$
 minimizes $f(x)$

$$f''(1) = \frac{-6(4)-0}{16} < 0 \implies 1 \text{ maximizes } f(x)$$

3. Suppose the demand and supply functions for a market are:

 $q^s = 4p$

Find the equilibrium price and quantity: $\mathbf{q}^{d} = \mathbf{q}^{s}$ $1200 - 2p = 4p \Rightarrow 6p = 1200 \Rightarrow p=200$ q=4p=4(200) = 800The equilibrium Price and Quantity are:

 $P_0 = 200$, $q_0 = 800$

4. Find all the local maxima and minima of the following functions, state whether each point is a maximum or minimum and find the value of the function at each point:

a. $y = x^2 - 4x + 2$ $y' = 2x - 4 = 0 \implies x = 2$ $y'' = 2 > 0 \implies x = 2$ minimizes the function. To get the value of this minimum , substitute x = 2 in y: $y = 2^2 - 4(2) + 2 = -4$

b. $y = x^3 - 3x^2$ $y' = 3x^2 - 6x = 0 \implies 3x(x-2) = 0 \implies x = 0 \text{ or } x = 2$ y'' = 6x - 6

For x = 0 , y'' = -6 < 0 \Rightarrow x = 0 maximizes the function. value of this maximum : y = 0³ -3(0²) = 0

For x = 2 , y'' = 6 > 0 \Rightarrow x = 2 minimizes the function. value of this minimum : y = 2³ -3(2²) = -4

. 6.

c.
$$y = x + \frac{1}{x}$$

 $y' = 1 + \frac{-1}{x} = 1 - \frac{1}{x^2} \implies x^2 - 1 = 0 \implies x = -1 \text{ or } x = 1$
 $y'' = \frac{2}{x^3}$
For $x = -1$, $y'' = -2 < 0 \implies x = -1$ maximizes the function
value of this maximum : $y = -1 + \frac{1}{-1} = -2$
For $x = 1$, $y'' = 2 > 0 \implies x = 1$ minimizes the function.
Value of this minimum : $y = 1 + \frac{1}{1} = 2$
d. $y = x^5$
 $y' = 5x^4 = 0 \implies x = 0$
 $y'' = 20x^3$
For $x = 0$, $y'' = 0 \implies$ Second Derivative Test *Fails*.
We need to study the sign of the *First* derivative:
 $y' = 5x^4 > 0 \forall x : + 0 + = 3$
No maximum or minimum at this inflexion point.

For comments, corrections, etc...Please contact Ahnaf Abbas: ahnaf@uaemath.com

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation.

5. The average cost function of a firm is :

$$ac = 15 - 6q + q^2 + \frac{1}{q}$$

where q is the level of output .Derive the total cost and the marginal cost functions and sketch the average and marginal cost curves in the same diagram:

The total Cost :
$$\mathbf{TC} = \mathbf{ac} \times \mathbf{q} = \mathbf{q}(15 - 6q + q^2 + \frac{1}{q})$$

 $\Rightarrow \mathbf{TC} = 15q - 6q^2 + q^3 + 1$

The *Marginal Cost* function is the derivative of the cost function:

 $MC = 15 - 12q + 3q^2$

If the firm can sell as many units as it wishes at the price of 6 , What quantity will it sell if it is to maximize profits:

Total Revenue : TR = 6q

The profit function:
$$\Pi = total revenue - total cost$$

=TR - TC=6q - (15q - 6q² + q³ + 1)
 $\Pi = -q^3 + 6q^2 - 9q - 1$

For the profit to be maximum ,its derivative = 0 $\prod ' = -3q^2 + 12q - 9 = 0 \implies q^2 - 4q + 3 = 0 \implies q = 1 \text{ or } q = 3$

$$\prod '' = -6q + 12$$

For q = 1, $\prod " = 6 > 0 \Rightarrow q = 1$ minimizes the profit.

For q = 3, $\prod " = -6 < 0 \implies q = 3$ maximizes the profit.

The profit maximizing output is 3.

What profit does it make at this output? Comment.

The profit is : PR = $-q^3 + 6q^2 - 9q - 1 = -(3)^3 + 6(3)^2 - 9(3) - 1 = -1$

The firm is running at a Loss.

6. Find the maximum value of the following functions(show it's maximum):

a. a.
$$f(x) = (1+x)e^{\frac{-x}{2}}$$
 of the form u.v
 $u = 1 + x \Rightarrow u' = 1$; $v = e^{\frac{-x}{2}} \Rightarrow v' = \frac{-1}{2}e^{\frac{-x}{2}}$
 $f'(x) = u'v + v'u = (1)e^{\frac{-x}{2}} + \frac{-1}{2}e^{\frac{-x}{2}}(1+x)$
 $f'(x) = e^{\frac{-x}{2}}\left(1-\frac{1+x}{2}\right) = e^{\frac{-x}{2}}\left(\frac{1-x}{2}\right) = 0 \Rightarrow x = 1$
To verify it is a maximum ,use second derivative test:
 $f'(x) = e^{\frac{-x}{2}}\left(\frac{1-x}{2}\right) \Rightarrow f''(x) = \frac{-1}{2}e^{\frac{-x}{2}}\left(\frac{1-x}{2}\right) + \frac{-1}{2}e^{\frac{-x}{2}}$
 $\Rightarrow f''(1) = 0 - \frac{1}{2}e^{\frac{-1}{2}} < 0 \Rightarrow x = 1$ maximizes $f(x)$.
To find the maximum ,substitute $x = 1$ in $f(x)$
 $f(1) = (1+1)e^{\frac{-1}{2}} = 2e^{\frac{-1}{2}} = \frac{2}{\sqrt{e}}$
b. $f(x) = x - x \ln x$
 $f'(x) = 1 - [(1)(\ln x) + (x)(\frac{1}{x})] = 1 - (\ln x + 1) = -\ln x = 0$
 $-\ln x = 0 \Rightarrow \ln x = 0 \Rightarrow x = e^{0} = 1$ (Recall: $\ln x = a \Rightarrow x = e^{a}$)
To verify it is a maximum ,substitute $x = 1$ in $f(x)$
 $f''(x) = -\frac{1}{x} \Rightarrow f''(1) = -1 < 0 \Rightarrow x = 1$ maximizes $f(x)$
To find the maximum ,substitute $x = 1$ in $f(x)$
 $f(1) = 1 - (1)(\ln 1) = 1 - 0 = 1$
7. Find the minimum value of the following functions(show it's)

minimum): a. $f(x) = e^{\sqrt{x}} - 2\sqrt{x}$; $e^{\sqrt{x}}$ is of the form e^{U} ; its derivative is U' e^{U} ; the derivative of \sqrt{x} is $\frac{1}{2\sqrt{x}}$

$$f'(x) = \frac{1}{2\sqrt{x}} e^{\sqrt{x}} - 2(\frac{1}{2\sqrt{x}}) = \frac{1}{2\sqrt{x}} e^{\sqrt{x}} - \frac{1}{\sqrt{x}}$$

$$= \frac{1}{\sqrt{x}} (\sqrt{2} e^{\sqrt{x}} - 1) = 0 \implies \sqrt{2} e^{\sqrt{x}} - 1 = 0$$

$$e^{\sqrt{x}} = 2 \implies \sqrt{x} = \ln 2 \text{ (Recall: } e^{x} = a \implies x = \ln a)$$

$$x = (\ln 2)^{2}$$
To verify it is a minimum , use second derivative test:
$$f'(x) = \frac{1}{\sqrt{x}} (\sqrt{2} e^{\sqrt{x}} - 1) \text{ is of the form } u.v$$

$$u = \frac{1}{\sqrt{x}} = x^{-\sqrt{2}} \implies u' = -\sqrt{2} x^{-3/2}$$

$$v = \sqrt{2} e^{\sqrt{x}} - 1 \implies v' = \sqrt{2} (\frac{1}{2\sqrt{x}} e^{\sqrt{x}}) = \frac{1}{4\sqrt{x}} e^{\sqrt{x}}$$

$$f''(x) = u'v + v'u = \frac{-1}{4} (e^{\sqrt{x}} - 1) x^{-3/2} + (\frac{1}{4\sqrt{x}} e^{\sqrt{x}})(\frac{1}{\sqrt{x}})$$

$$f''(x) = \frac{-1}{3} (e^{\sqrt{x}} - 1) + \frac{e^{\sqrt{x}}}{4x} > 0$$

$$e^{\sqrt{x}} = e^{\sqrt{(\ln 2)^{2}}} = e^{\ln 2} = 2 \text{ (Recall: } e^{\ln a} = a)$$
The value of the minimum : $f(\ln^{2} 2) = 2 - 2\ln 2$
b. $f(x) = x^{2} - \ln(\sqrt{2} x)$

$$f'(x) = 0 \Rightarrow 2x - \frac{1}{x} = 0 \Rightarrow 2x = \frac{1}{x} \Rightarrow 2x^{2} = 1$$

$$x^{2} = \frac{1}{2} \Rightarrow x = \pm \frac{1}{\sqrt{2}}$$

$$f'(x) = 2 + \frac{1}{x^{2}} > 0 \forall x$$

$$x = \pm \frac{1}{\sqrt{2}} \text{ both minimize } f$$

$$F'(x) = \frac{1}{x}$$

8. A profit maximizing firm has the total cost function :

$$C = \frac{1}{3}q^{3} - q^{2} + 3q$$

and faces the demand schedule : q = 30 - P where C and P are in £ 's.

Calculate the output of the firm which maximizes the profit.

The Net profit function: $\Pi = total revenue - total cost$ $\Pi = qp - C \quad \text{with } q = 30 - P \Rightarrow P = 30 - q$ $\Pi = q(30-q) - \left(\frac{1}{3}q^3 - q^2 + 3q\right)$ $\Pi = 27q - \frac{1}{3}q^3$ $\Pi' = 27 - q^2 = 0 \Rightarrow q = -\sqrt{27} = -3\sqrt{3} \text{ or } q = \sqrt{27} = 3\sqrt{3} ,$ $q > 0 \Rightarrow q = 3\sqrt{3}$ $\Pi'' = -2q = -2(3\sqrt{3}) = -6\sqrt{3} < 0 \Rightarrow q = 3\sqrt{3} \text{ maximizes the Profit.}$