International Institute for Technology and Management

Unit : 05a - Mathematics 1

Handout #9

Integration I: Anthony & Biggs pp: 317 - 329,330-332

Topic	Interpretation
Anti-Derivative $F'(x) = f(x)$	F(x) is the antiderivative of f or the primitive of f .
Example: f(x)=2x is the derivative of $F(x)=x^2$ here, $F'(x)=f(x)$ $F(x)=x^2+1$; $F'(x)=2x$	x^2 is the antiderivative of $2x$ x^2+1 is the antiderivative of $2x$ All antiderivatives of a certain function differ only by a constant.
Indefinite Integral $\int f(x)dx$	f(x) is the derivative of what function?
Example: $\int 2x dx = x^2 + C$	Derivative of $x^2 + C$ is $2x$
Basic rules:	
$\int x^{k} dx = \frac{x^{k+1}}{k+1} + C ; k \neq 1$ Example: $\int x^{5} dx$	$=\frac{x^6}{6}+C$
$\int \sqrt{x} dx = \int x^{\frac{1}{2}} dx$	$= \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + C = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + C = \frac{2x^{\frac{3}{2}}}{3} + C$
Things to Remember: $\int k dx = kx + C$	Examples:
$\int kf(x)dx = k \int f(x)dx$	$\int 5dx = 5x + C ; \int dx = x + C$
	$\int 4x^2 dx = 4 \int x^2 dx = 4 \frac{x^3}{3} + C$

Definite Integral

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Example: $\int x^4 dx$

$$\int_{0}^{1} x^{4} dx = \frac{x^{5}}{5} \left| \frac{1}{0} = F(1) - F(0) \right|$$
$$= \frac{1^{5}}{5} - \frac{0^{5}}{5} = \frac{1}{5}$$

Integration by Substitution

Suppose you need to find:

$$\int (2x+1)^2 dx$$

What about : $\int (2x+1)^{12} dx$ It is not practical to expand $(2x+1)^{12}$;

So we use Substitution.

Example: $\int x^3(\sqrt{x^2+1})dx$ Let $u = x^2 + 1$, then the integral becomes : $\int x^3 \sqrt{u} dx$

We need to change dx into du $u = x^2 + 1 \Rightarrow du = 2x dx$ $\Rightarrow dx = \frac{du}{2x}$ substituting this in

the above integral:

$$\int x^3 \sqrt{u} \, \frac{du}{2x} = \frac{1}{2} \int x^2 \sqrt{u} \, du$$

Now, we need to get rid of x^2 : $u = x^2 + 1 \Rightarrow x^2 = u - 1$

$$\frac{1}{2} \int x^2 \sqrt{u} du = \frac{1}{2} \int (u - 1) \sqrt{u} du$$
$$= \frac{1}{2} \int u \sqrt{u} du - \frac{1}{2} \int \sqrt{u} du$$

$$= \frac{1}{2} \int u \times u^{\frac{1}{2}} du - \frac{1}{2} \int u^{\frac{1}{2}} du$$

One way to do it is to expand $(2x+1)^2$ So it will turn into something we know based on the above rule:

$$(2x+1)^2 = 4x^2 + 4x + 1$$

$$\int (2x+1)^2 dx = \int (4x^2 + 4x + 1) dx$$

$$= 4\frac{x^3}{3} + 4\frac{x^2}{2} + x + C = \frac{4x^3}{3} + 2x^2 + x + C$$

Let u = 2x + 1, then the integral becomes:

$$\int u^{12} dx$$

We need to change dx into du

$$u = 2x + 1 \Rightarrow du = 2 dx$$

$$\Rightarrow$$
 $dx = \frac{du}{2}$ substituting this in the

above integral:

$$\int u^{12} dx = \int u^{12} \frac{du}{2} = \frac{1}{2} \int u^{12} du$$

$$=\frac{1}{2}\frac{u^{13}}{13} + C$$
; With $u = 2x + 1$:

$$= \frac{1}{2} \frac{(2x+1)^{13}}{13} + C = \frac{(2x+1)^{13}}{26} + C$$

$$= \frac{1}{2} \frac{(2x+1)^{13}}{13} + C = \frac{(2x+1)^{13}}{26} + C$$

$$= \frac{1}{2} \int u^{\frac{3}{2}} du - \frac{1}{2} \frac{u^{\frac{3}{2}}}{3/2} + C = \frac{1}{2} \frac{u^{\frac{5}{2}}}{5/2} - \frac{u^{\frac{3}{2}}}{3} + C$$

$$= \frac{u^{\frac{5}{2}}}{5} - \frac{u^{\frac{3}{2}}}{3} + C = \frac{(x^2 + 1)^{\frac{5}{2}}}{5} - \frac{(x^2 + 1)^{\frac{3}{2}}}{3} + C$$