

Unit 05a Mathematics 1

Handout #4

Basics IV: Logarithm/Exponential

Topic

The Exponential Function

If a is a positive constant other than 1 ,then the function defined by:

 $f(x) = a^{x}; a > 0; a \neq 1$ is called exponential function with base a.

Properties:

$$\overline{1. \text{ if } a^x = a^y} \Leftrightarrow x = y$$

- 2. $a^x > 0$ for every x
- 3. All rules of indices apply; for example, $a^x \times a^y = a^{x+y}$

<u>Base</u> *e* :

A special irrational number *e* **= 2.718281828**,arises naturally in many mathematical situations:

$$f(x) = e^x$$

Properties:

- 1. $e^x > 0$ for every x; this means $e^x \neq 0$. Also, $e^{-x} > 0$ (e raised to any power is positive)
- 2. $e^{-x} = \frac{1}{e^x}$
- 3. All rules of indices apply; for example $(e^x)^2 = e^x \times e^x$ $= e^{x+x} = e^{2x}$

and not e^{x^2}

4. If $e^x = 1 \implies x = 0$ since $e^0 = 1$

Interpretation

e.g.
$$f(x) = 10^x$$
; $f(x) = 2^{-x}$; $f(x) = 3^{0.6x}$
If $a = 1 \implies f(x) = 1^x = 1$

Exponential functions with negative bases are not of interest because when a is negative, a^x may not be defined for some values of x ; e.g. $(-2)^{0.5} = \sqrt{-2}$ is not a real number.

Example 1:
$$2^{x+1} = 8 \Rightarrow 2^{x+1} = 2^3$$

 $\Leftrightarrow x + 1 = 3 \Rightarrow x = 2$

Example2:
$$3^{-2} > 0$$
 since $3^{-2} = \frac{1}{3^2} = \frac{1}{9}$

Example3: Solve for x:

1. $x^2 e^{\frac{-x}{2}} - e^{\frac{-x}{2}} = 0$; a good strategy is to isolate the exponential in any equation that involves them.i.e. take them as common factors:

$$(x^2 - 1)e^{\frac{-x}{2}} = 0$$
; since $e^{\frac{-x}{2}} \neq \mathbf{0}$ then $x^2 - 1 = 0 \iff x^2 = 1 \iff x = \pm 1$

2. $e^x = -4$; No real solution since $e^x > 0$

Example4:

1.
$$(e^{x} + e^{-x})^{2} = (e^{x})^{2} + 2(e^{x})(e^{-x}) + (e^{-x})^{2}$$

 $= e^{2x} + 2e^{x-x} + e^{-2x}$
 $= e^{2x} + 2e^{0} + e^{-2x}$;
with $e^{0} = 1$; $= e^{2x} + e^{-2x} + 2$
2. Solve $e^{2x} + 2e^{x} + 1 = 0$

with
$$e^0 = 1$$
; $= e^{2x} + e^{-2x} + 2$

$$\Rightarrow (e^{x} - 1)^{2} = 0 \Rightarrow e^{x} = 1 \Rightarrow x = 0$$

1

Logarithms

Any Base a: Exponential form

$$y = \log_a x \Leftrightarrow a^y = x$$

Logarithmic Form

y is the logarithm of x to the base a .

Note that $x = a^y > 0$; Hence In $y = \log_a x$, x > 0

i.e. $y = \log_a x$ is *defined* only for x > 0.

Properties:

- 1. $\log_a 1 = 0$ the logarithm of 1 to any base is zero.
- 2. $\log_a a = 1$ the logarithm of the base is One.
- 3. $\log_a x^n = n \log_a x$
- 4. $\log_a x + \log_a y = \log_a xy$
- $5. \log_a x \log_a y = \log_a \frac{x}{y}$
- 6. $a^{\log_a x} = x$; e.g. $2^{\log_2 5} = 5$ Base 10:

Written: $\log x$ i.e. without base attached to log means it is to base **10**.

$$y = \log x \Leftrightarrow 10^y = x$$

- e.g. $\log 100 = \log 10^2$ = $2\log 10 = 2(1) = 2$
- e.g. $10^{\log 3} = 3$

Base e: $y = Lnx \Leftrightarrow e^y = x$

Written : In x

e.g. Ln $e^3 = 3$ Ln e = 3(1) = 3

e.g. $e^{ln5} = 5$

<u>Change of base</u>: Any base to base e:

$$\log_a x = \frac{\ln x}{\ln a}$$
; e.g. $\log_7 x = \frac{\ln x}{\ln 7}$

Example: A.) Write in the logarithmic form

1.
$$2^4 = 16 \Leftrightarrow \log_2 16 = 4$$
base Exponent base Exponent

2. $3^{-2} = 9 \Leftrightarrow \log_3 9 = -2$

3.
$$7^0 = 1 \iff \log_7 1 = 0$$

B.)Write in the exponential form:

1.
$$\log_5 125 = 3 \iff 5^3 = 125$$

2.
$$\log_3 1 = 0 \iff 3^0 = 1$$

Example2: $\log_5(-2)$ does not exist.

 $\log_2 0$ does not exist.

Quantity under log must be always > 0.

- 1. Simply because $a^0 = 1 \Leftrightarrow \log_a 1 = 0$ e.g. $\log_2 1 = 0$; $\log_6 1 = 0$.etc....
- 2. Simply because $a^1 = a \Leftrightarrow \log_a a = 1$ e.g. $\log_2 2 = 1$; $\log_5 5 = 1$
- e.g. $\log_2 8 = \log_2 2^3 = 3\log_2 2 = 3(1) = 3$
- e.g. $\log_8 3 + \log_8 5 = \log_8 15$
- e.g. $\log_5 100 \log_5 4 = \log_5 \frac{100}{4} = \log_5 25$ = $\log_5 5^2 = 2\log_5 5 = 2(1) = 2$

Same rules of log:

Same rules of log.	
Base 10 : $\log x$	Base e : In x
1. $\log 1 = 0$	Ln 1 = 0
2. $\log 10 = 1$	Ln e = 1
$3. \log x^n = n \log x$	$Ln x^n = n Ln x$
$4. \\ \log x + \log y = \log xy$	Ln x+Ln y= Lnxy
5.	
$\log x - \log y = \log \frac{x}{y}$	
6. $10^{\log x} = x$	$e^{\ln x} = x$

2

For comments, corrections, etc... Please contact, Ahnaf Abbas: ahnaf@uaemath.com

Logarithmic/Exponential **Equations**

Recall : $a^x > 0$; $e^x > 0$ ($e^x \ne 0$) Logx: x > 0

Most equations can be solved using the definitions:

1.
$$y = \log_a x \Leftrightarrow a^y = x$$

e.g.
$$\log_2 x = 5 \iff x = 2^5 = 32$$

e.g.

$$\log_3(x^2 - 1) = 2 \Leftrightarrow x^2 - 1 = 3^2 = 27$$

$$\Rightarrow x^2 = 28 \Rightarrow x = \pm \sqrt{28} = \pm 2\sqrt{7}$$

2.
$$\log x = a \Leftrightarrow x = 10^a$$

e.g.
$$\log x = 3 \Rightarrow x = 10^3 = 1000$$

e.g.
$$log(x-1) = 1$$

 $\Rightarrow x - 1 = 10^{1} = 10$
 $\Rightarrow x = 11$

e.g.
$$\log (2x - 1) = \log 5$$

 $\Rightarrow 2x - 1 = 5$
 $\Rightarrow 2x = 6 \Rightarrow x = 3$

3. Lnx =
$$a \Leftrightarrow x = e^a$$

e.g. Ln x =
$$2 \Rightarrow x = e^2$$

e.g. Ln
$$(x - 1) = 0$$

 $\Rightarrow x - 1 = e^0 = 1$
 $\Rightarrow x = 2$

e.g.
$$Ln x - Ln (x+1) = 2$$

$$\Rightarrow \ln \frac{x}{x+1} = 2 \ln e = \ln e^2$$

since Ln e = 1

$$\Rightarrow \frac{x}{x+1} = e^2 \Rightarrow e^2 x + e^2 = x$$

$$\Rightarrow e^2 x - x = -e^2$$

\Rightarrow (e^2 - 1)x = -e^2

$$\Rightarrow$$
 (e² - 1)x = -e²

$$\Rightarrow x = \frac{-e^2}{e^2 - 1}$$

Examples:

1.
$$2e^{-x^2} - 2xe^{-x^2} - 4x2e^{-x^2} = 0$$

= $2e^{-x^2} (1 - x - 2x^2)$

$$\Rightarrow$$
 -2x² - x + 1 = 0 ; a quadratic equation with

$$a = -2$$
, $b = -1$ and $c = 1$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{9}}{-4} = \frac{1 \pm 3}{-4}$$

$$x = -1$$
 or $x = \frac{1}{2}$

$$2. e^{2x} + 2 e^{x} - 3 = 0$$

$$(e^{x})^{2} + 2 e^{x} - 3 = 0$$
; Let $y = e^{x} > 0$
 $y^{2} + 2y - 3 = 0$
 $(y - 1)(y + 3) = 0$

$$y = 1$$
 or $y = -3$
 $e^{x} = 1 \Rightarrow x = Ln \ 1 = 0$
 $e^{x} = -3$ No solution since $e^{x} > 0$

3.
$$(\ln x)^2 - \ln x - 2 = 0$$
; Let $y = \ln x$
 $y^2 - y - 2 = 0$
 $(y + 1)(y - 2) = 0$; $y = -1$ or $y = 2$
 $\ln x = -1 \Rightarrow x = e^{-1} = 1/e$
 $\ln x = -2 \Rightarrow x = e^{-2} = 1/e^2$

4. Ln x + Ln (x+1) = 1; with ln e = 1
Ln x(x+1) = ln e

$$x(x+1) = e \Rightarrow x^2 + x - e = 0$$

a quadratic equation with
 $a = 1$, $b = 1$ and $c = e$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{1 - 4e^2}}{2}$$

No roots since $1 - 4e^2 < 0$

Caution: In general $Ln(x+y) \neq Ln x + Ln y$

Ln x - Ln y
$$\neq \ln \frac{x}{y}$$