For comments, corrections, etc...Please contact Ahnaf Abbas: ahnaf@mathyards.com

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, http://www.gnu.org/copyleft/fdl.html Version 1.2 or any later version published by the Free Software Foundation

International Institute for Technology and Management

Unit 05a : Mathematics 1	Handout #18
Partial Derivatives IV	
Study Guide pp 89-93 ;Anthony & Biggs pp 253-259 🧷	
Topic	Interpretation
Constrained Optimization:	$f(x,y) = 160x - 3x^2 - 2xy - 2y^2 + 120y - 18;$
Suppose $f(x,y)$ has to be	q(x,y) = x + y - 34 = 0
minimized or maximized	$L(x,y,\lambda) = f(x,y) - \lambda g(x,y)$
subject to the constraint	$L = 160x - 3x^2 - 2xy - 2y^2 + 120y - 18$
g(x,y)=0	$-\lambda(x+y-34)$
Use the Lagrange Multipliers:	$L = (160 - \lambda) x - 3x^{2} - 2xy - 2y^{2} + (120 - \lambda)y$
1.)Set:	$-18 \pm 34 \lambda$
$L(x,y,\lambda) = f(x,y) - \lambda g(x,y)$	
2.)Find x and y as solutions of:	$\frac{\partial L}{\partial x} = 160 - \lambda - 6x - 2y = 0 - (1)$
$\partial L = 0$ $\partial L = 0$ $\sigma(x,y) = 0$	
$\frac{\partial x}{\partial x} = 0$, $\frac{\partial y}{\partial y} = 0$, $g(x,y) = 0$	$\frac{\partial L}{\partial x} = -2x - 4y + 120 - \lambda = 0 (2)$
Example1:	
Use the Lagrange multiplier to	g(x,y) = x + y - 34 = 0(3)
find the values of x and y	Eliminate λ from (1) & (2) :
which maximizes	(1) $\lambda = 160 - 6x - 2y$
$160x - 3x^2 - 2xy - 2y^2 + 120y - 18$	(2) $\lambda = -2x - 4y + 120$; $\lambda = \lambda$
subject to the constraint	160 - 6x - 2y = -2x - 4y + 120
x + y=34	$4x+2y+40=0 \Rightarrow 2x+y+20=0$ (4)
NB : If no constraint is imposed	(3) & (4) :
The maximum is at (20,20)	x + y - 34 = 0; $2x + y + 20 = 0$
$f_1 = 160 - 6x - 2y = 0$	x = 18, $y = 16$
$f_2 = -2x - 4y + 120 = 0$	The constrained maximum
Solving simultaneously, $x = 20$	f(18,16) = 2/22
$y = 20$; $f_{11} = -6$, $f_{22} = -4$; $f_{12} = -2$	Example 2: u (10, 4) > u (9, 6) means
\Rightarrow (f ₁₁)(f ₂₂) - $f_{12}^2 = 20 > 0$	that the consumer prefers to the bundle
Since $f_{11} = -6 < 0 \implies (20,20)$	consisting of 10 of X & 4 of Y rather than
maximizes f .	9 of X and 6 Of Y.
Applications of Constrained	Example 3: The prices of two goods X &
Optimization:	Y are $P_x = 2$ and $P_y = 5$.
1. Utility Function: u(x,y) :	The utility function $u(x,y) = x^{1/3}y^{1/2}$ and
For consuming two goods X and Y	the income $M = 40$. Maximize the utility
,u(x,y) enables deciding between	runction subject to the budget constraint.
two bundles, i.e. ranking bundles.	The budget constraint :

For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@mathyards.com</u>

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation

Budget constraint:

Consumers normally seek the best bundle (highest utilitygiving) they can afford. If the budget is **M** and the prices of X and Y are respectively P_x and P_y , then consumers can only afford bundles (x,y) satisfying: $xP_x + yP_y \le M$. i.e. consumers tend to maximize u(x,y) subject to the budget constraint $xP_x + yP_y = M$

2. Production Function : q(k,l) q : production (quantity) k: Capital ; l = Labour

In order to produce a given quantity Q ,a firm usually chooses a combination of cost units of capital and labour such that the Cost is minimum. If the cost of a unit of capital is v and the cost of a unit of labour (wage) is w then the cost is found by solving the following problem: minimize vk + wlsubject to q(k,l) = QThis is again a standard **Constrained Optimization** problem. **Production Maximization:** The problem here is to

maximize Q(x,y) subject to the constraint that the company spends no more than a certain amount.

 $xP_x + yP_y = M$; 2x + 5y = 40the problem becomes a standard *constrained optimization*: Maximize $u(x,y) = x^{1/3}y^{1/2}$ subject to the constraint 2x + 5y = 40. *Follow the steps mentioned in* **Example1** x = 8, y = 24/5.

Example 4: A firm's weekly output is given by the production function $q(k,l) = k^{3/4} l^{1/4}$. The unit costs for capital and labour are v = 1 and w = 5 per week Find the minimum cost of producing a weekly output of 5000 and the corresponding values of k and l. The total cost : vk + wl = k + 5lThe problem to be solved is the constrained optimization: Minimize k + 5l subject to $k^{3/4} l^{1/4} = 5000$ Follow the steps mentioned in **Example1** $k = 5000(15)^{1/4}$, $l = 5000(15)^{-3/4}$ Minimum cost $= k + 5l \approx 13120$

Example 5: A firm manufactures a good from two raw materials X and Y.The quantity of its good which is produced from x units of X and y units of Y is given by the quantity $Q(x,y) = x^{1/4}y^{3/4}$ If the firm spends no more than \$1280 each week on the raw material, what is the maximum possible weekly production Given that one unit of X costs \$16 and one unit of Y costs \$1 The problem here is to : Maximize $Q(x,y) = x^{1/4}y^{3/4}$ subject to the constraint 16x + y = 1280Follow the steps mentioned in **Example1** x = 20; y = 960; Maximum production: $Q(20,960) = (20)^{1/4}(960)^{3/4}$