For comments, corrections, etc...Please contact Ahnaf Abbas: ahnaf@mathyards.com

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation

International Institute for Technology and Management

Handout #17

Unit 05a

:

Mathematics 1

Partial Derivatives III

Study Guide pp 87-88 ;Anthony & Biggs pp 139-142 🏾 🧷	
Topic	Interpretation
Optimization: several variables	Example1:
Suppose a company produces	A small firm manufacturers two goods X
two products X and Y.	and Y and the Market price of these
	goods is unaffected by the by the level of
If P_x is the selling price of one	the firm's production. The firm's cost
unit of X, the total revenue	function is $C(x, y) = 2x^2 + 2y^2 + xy$ and
obtained by producing x	the market price of X is \$12 per unit and
amount: xP _x	the market price of Y is \$18 per unit.
	Write the firm's profit function as an
Similarly, if P_y is the selling	expression in terms of x and y :
price of one unit of Y, the total A	$TR = xP_x + yP_y = 12x + 18y$
revenue obtained by producing	$\pi = \text{TR} - \text{TC} = 12x + 18y - 2x^2 - 2y^2 - xy$
x amount: yPy	- Determine the number of units of each
	that the firm should produce to <i>maximise</i>
The total revenue obtained by	its profit: A usual maximization problem:
producing x and y :	Let $\pi = f(x,y)$; $f_{11} = 12 - 4x - y = 0$;
	$f_{22} = 18 - 4y - x = 0 \implies x = 2, y = 4$
$IR(x,y) = xP_x + yP_y$	$f_{11} = -4$, $f_{22} = -4$; $f_{12} = 1$
If TC(x, y) is the total cast, the	$\Rightarrow (f_{12})(f_{12}) = \int_{12}^{2} - 15 > 0$
the Brofit function:	$(1_{11})(1_{22}) = 0.12 = 1.5 > 0$
	Since $I_{11} = -4 < 0 \rightarrow (2,4)$ maximizes 1.
$\pi - TP - TC - vP + vP - TC$	$\frac{12(2) \pm 18(4) - 2(2)^2}{2} - 2(2)^2 - (2)(2) = 76$
$\frac{\mu - 1R - 1C - xr_x + yr_y - 1C}{1C}$	12(2)+10(4)-2(2)-2(2)-(2)(2)-70
Relation between Prices &	Example 2: A firm is monopoly has total
Quantities:	cost function: $C(x,y) = 5+x^2 + y^2 - xy$
Case 1: P_x & P_y are constants:	The inverse demand functions for X & Y :
Perfect competition or efficient	$P_{\rm x} = 5 - 0.5 {\rm x}$; $P_{\rm y} = 24 - {\rm y}$
Small firm.(Example 1)	The profit function :
	$TR = xP_x + yP_y = x(5-0.5x) + y(24-y)$
	$TR = 5x - 0.5x^2 + 24y - y^2$

For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@mathyards.com</u> This is an open source document. Permission is granted to copy, distribute and/or modify this document

This is an open source document. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, <u>http://www.gnu.org/copyleft/fdl.html</u> Version 1.2 or any later version published by the Free Software Foundation

$\frac{Case \ 2:}{P_x} P_x \text{ depends only on } x , \\ P_y \text{ depends only on } y: \\ Monopoly , No interaction \\$	$\pi = \text{TR} - \text{TC}$ =5x - 0.5x ² +24y - y ² -5 -x ² - y ² + xy = 5x + 24y -1.5x ² -2y ² + xy - 5
between the markets for X & Y P_x & P_y are inverse demand functions.(Example 2)	Example 3: a firm is the only producer of X and Y; the demand for X is given by : $x = 2 - 2P_x + P_y$ the demand for X is given by :
Case 3: each $P_x \& P_y$ depends	$y = 13 + P_x - 2P_y$
on both x and y : amount of X	find the profit function knowing that the total cost function: $C(x,y)=5+x^2+y^2-xy^2$
on the market affects the	TP = xP + yP : to get P and P
demand of Y and vice versa.	Rearrange the equations x = 2, $2P + P$, $2P + P = x + 2$
Equivalently the price of X	$x = 2 - 2P_x + P_y \Longrightarrow - 2P_x + P_y = x - 2$ $y = 13 + P_x - 2P_y \Longrightarrow P_x - 2P_y = y - 13$
affects the demand for X as	Solve for $P_x \& P_y$ Simultaneously : P = $(17 - 2x - y)/3$
well as the Demand for Y and	$P_y = (28 - x - 2y)/3$ TP = xP + xP
vice versa.(Example 3)	= (x/3)(17 - 2x - y) + (y/3)(28 - x - 2y)
	$\pi = TR - TC$ =-5 + (17/3)x + (28/3)y -(5/3)x ²
	$-(5/3)y^2 + (1/3)xy$