For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@uaemath.com</u>

International Institute for Technology and Management

Unit 05a :

Mathematics 1

Handout #1

Basics I: Arithmetic

Торіс	Interpretation
The Real Numbers	
N:Natural (counting) Numbers W:Whole Numbers Z:Integers Q:Rational Numbers	1,2,3,4, 0,1,2,3,4, ,-3,-2,-1,0,1,2,3, All numbers of the form a/b ,where a and b are integers with b≠0
I:Irrational numbers	e.g. 3/2 , - 2/7 , 5 = 5/1 Real numbers that are not Rational e.g. π
$N \subseteq Z \subseteq Q$ $R = Q \bigcup I$	All the above numbers are <i>real</i> numbers.
Order of operations Follow the following order as they occur working from left to right: 1.Parenthses & square brackets 2.Powers 3.Multiplication or division 4.Addition or subtraction	$\frac{2(-2-5)^2 + 4(5)}{-3+4} = \frac{2(-7)^2 + 20}{1}$ $= \frac{2(49)^2 + 20}{1} = 2(49) + 20 = 98 + 20 = 118$ $\frac{-11 - (-12) - 4 \times 5}{4(-2) - (-6)(-5)} = \frac{-11 + 12 - 20}{-8 - (+30)} = \frac{-19}{-38}$ $= \frac{19}{38} = \frac{1}{2} = 0.5$
Absolute Value $ x = \begin{cases} -x & \text{if } x < 0 \\ +x & \text{if } x \ge 0 \end{cases}$ $ x \ge 0 \text{ for every } x$ $ x - y \ne x - y $ $ x + y = x + y \text{ for } x, y$ having the same sign.	-5 = 5 ; 5 = 5 3 - 7 = -4 = 4 3 - 7 = 3 - 7 = -4 5+4 = 9 = 9 5 + 4 = 5 + 4 = 9
Fractions Addition $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$	$\frac{3}{7} - \frac{5}{8} = \frac{8 \times 3 - 7 \times 5}{56} = \frac{24 - 35}{56} = \frac{-11}{56}$

Square roots There are two numbers whose square is 25 : -5 and 5 $(-5)^2 = -5 \times -5 = 25$ $5^2 = 5 \times 5 = 25$ The <i>positive</i> one, 5, is called the square root of 25. $\sqrt{x} \ge 0$ for every real number x For \sqrt{x} to exist, $x \ge 0$ $(\sqrt{x})^2 = \sqrt{x} \times \sqrt{x} = x$ $\sqrt{x+y} \ne \sqrt{x} + \sqrt{y}$ $\sqrt{x} \times \sqrt{y} = \sqrt{xy}$ $\frac{\sqrt{x}}{\sqrt{y}} = \sqrt{\frac{x}{y}}$	$\sqrt{49} = 7 \text{ since } 7^2 = 49$ $\sqrt{-25} \text{ does not exist.}$ $\sqrt{16+9} = \sqrt{25} = 5$ $\sqrt{16} + \sqrt{9} = 4 + 3 = 7$ $4\sqrt{5} \times 7\sqrt{3} = 28\sqrt{15}$ $\frac{\sqrt{2}}{\sqrt{3}} = \sqrt{\frac{2}{3}}$ $\sqrt{2} \times \sqrt{2} = 2$ $7\sqrt{2} \times 3\sqrt{2} = 21 \times 2 = 42$ $\frac{5}{\sqrt{3}} = \frac{5}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{5\sqrt{3}}{3}$ Estimate $\sqrt{73}$ since $8^2 = 64$ and $9^2 = 81$ $\sqrt{73}$ must be between 8 and 9.
Exponents	
$x^m \times x^n = x^{m+n}$	$2x^3 \times 5x^4 = 10x^7$
$\frac{x^m}{x^n} = x^{m-n}$	$\frac{-12x^7}{6x^5} = -2x^2$
$\int_{-\infty}^{\infty} (x^m)^n = x^{mn}$	$(2x^2)^3 = 2^3 x^6 = 8x^6$
$\left \frac{1}{x^m} = x^{-m}\right $	$\frac{1}{x^3} = x^{-3}$
$\sqrt{x} = x^{\frac{1}{2}}$	$\sqrt{25x^4} = 5x^{\frac{4}{2}} = 5x^2$
$\sqrt[n]{x^m} = x^{\frac{m}{n}}$	$\sqrt[5]{x^3} = x^{\frac{3}{5}}$
Polynomials In the expression 2x ³ , x is called a <i>variable</i> because it can assume any number of different values. 2 is called the coefficient. The highest power that appears in a polynomial is the degree of the polynomial.	Like terms of a polynomial can be added or subtracted, unlike terms can not. $9x^5 - 15x^5 = -6x^5$ $3x + 4x^2 = 3x + 4x^2$ Multiplication : (2x - 1)(3x + 5)
$2x - 5x^{3} + 7x^{2}$ is of degree 3	= (2x)(3x) + (2x)(5) - (1)(3x) - (1)(5) = $6x^2$ + $10x - 3x - 5 = 6x^2 + 7x - 5$

Factoring Example1: factor 12x – 18y The number 10 can be written Both 12x and 18y are divisible by 6 : as 5x2, 1x10,.... 6(2x) - 6(3y) = 6(2x - 3y)The numbers in each product Example2: $8x^3 - 9x^2 + 15x$ are called *factors*, the process of writing 10 as a product of Each of these terms is divisible by x : $x(8x^{2}) + x(-9x) + x(15) = x(8x^{2} - 9x + 15)$ factors is called *factoring*. Example3: $5(4x-3)^3 - 2(4x-3)^2$ Difference of two squares $(a-b)(a+b) = a^2 - b^2$ $(4x-3)^2$ is the common factor : $(4x-3)^{2}$ [5(4x-3) - 2] = $(4x-3)^{2}(20x-17)$ **a² + b²** can not be factored in real numbers and is always Example4: $x^2 - 16 = x^2 - 4^2 = (x-4)(x+4)$ positive; $x^2 + 5 > 0$ for every x Example5: $81x^4 - 16 = (9x^2)^2 - (2^2)^2$ = $(9x^2 - 4)(9x^2 + 4)$ real number. **Difference of two cubes** $= (3x-2)(3x+2)(9x^2+4)$ $a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$ Example6: $x^3 - 8 = x^3 - 2^3$ Sum of two cubes $= (x-2)(x^2 + 2x + 4)$ $a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$ <u>Example7</u>: $y^3 + 125 = y^3 + 5^3$ Perfect Squares $(a+b)^2 = (a+b)(a+b)$ $=(y+5)(y^2-5y+25)$ $= a^{2} + 2ab + b^{2}$ $(a - b)^2 = (a - b)(a - b)$ Example8: $(2x - 7)^2 = (2x)^2 - 2(2x)(7) + 7^2$ $= a^2 - 2ab + b^2$ $= 4x^2 - 28x + 49$ **Perfect Cubes** $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$ Example9: $(q - 2)^3$ $= q^3 - 3(q^2)(2) + 3q(2^2) - 2^3$ $= q^3 - 6q^2 + 12q - 8$ **Factoring Trinomial** Example 9: Factor $\dot{x^2} - x - 6$ A trinomial is a polynomial with three terms.Our concern here The factors of 6 whose sum or difference is those of degree 2 : is - 1 are 2 and - 3 (notice their x^{2} + bx + c ;when it is product is -6) : (x - 3)(x+2)possible, can be factored into Example10: Factor $4y^2 - 11y + 6$ two factors (x + m)(x+n)Look for the factors of the constant term c whose sum (or Here the factors should look like: difference) is *b* ; being factors) or (4y (2y)(2y)(y of c, their product is c. We do it by trial :we need 6 at the end $x^{2} + 5x + 4$,i.e. (-1)(-6) ,(1)(6) ,(2)(3) or (-2)(-3) $(2y - 1)(2y - 6) = 4y^2 - 14y + 6$ NO the factors of 4 whose sum is 5 $(2y - 2)(2y - 3) = 4y^2 - 14y + 6$ NO are 1 and 4 $x^{2} + 5x + 4 = (x+1)(x+4)$ $(4y - 3)(y - 2) = 4y^2 - 11y + 6$ YES