International Institute for Technology and Management October 27,2008

Duration :1.5 hrs

Unit 05a: Mathematics 1 – (MathA)

Assignment – 1

1. (a) The supply equation for a good is

$$q = 10p^2 + 2p$$

and the demand equation is

$$q = 150 - 6p^2$$

where \mathbf{p} is the price.

Sketch the supply and the demand functions for $\mathbf{p} \geq 0$ Use the graph , or otherwise , to find the positive \mathbf{p} at which the two curves intersect.

The Supply $q = 10p^2 + 2p$

- (1)It has U shape since it has positive p^2 term
- (2)Intercepts: p-intercepts : $q = 0 \Rightarrow 10p^2 + 2p = 0$

 $2p(5p+1)=0 \implies p=0 \text{ or } p=-1/5 ; (0,0) \text{ and } (-1/5,0)$

<u>q-intercpt</u>: $p = 0 \Rightarrow q = 0$; (0,0)

(3) The minimum : $q' = 20p + 2 = 0 \Rightarrow p = -1/10$ $\Rightarrow q = -1/10$; (-1/10, -1/10)

OR p =
$$\frac{-b}{a} = \frac{-2}{a} = \frac{-1}{a} \Rightarrow q = -1/10 \Rightarrow V(-1/10, -1/10)$$

The demand : $q = 150 - 6p^2$

- (1) It has \bigcap shape since it has negative p^2 term.
- (2) Intercepts: <u>p-intercept</u>, $q = 0 \Rightarrow 150 6p^2 = 0$ $p^2 = 25 \Rightarrow p = -5$ or p = 5; (-5,0) and (5,0)

q-intercepts:
$$p = 0 \Rightarrow q = 150$$
; $(0, 150)$
3) The maximum: $q' = -12p = 0 \Rightarrow p = 0 \Rightarrow q = 150$

(3) The maximum :
$$q' = -12p = 0 \Rightarrow p = 0 \Rightarrow q = 150$$

OR
$$p = \frac{-b}{2a} = \frac{0}{-12} = 0 \implies q = 150 \implies V(0,150)$$

To determine the equilibrium price, we solve: $10p^2 + 2p = 150 - 6p^2 \implies 16p^2 + 2p - 150 = 0$ which is equivalent to $8p^2 + p - 75 = 0 \implies (8p+25)(p-3)=0$ Either p = -25/8 or p=3 of which only p=3 is economically Meaningful. $p=3 \Rightarrow q=96$

(b) For which values of $\alpha \in \Re$ has the equation:

$$x^2 + x + \alpha = 0$$

No solutions, exactly one solution or two solutions? Determine the solutions in the second and third cases.

$$b^2 - 4ac = 1 - 4\alpha$$

No solution: $1 - 4\alpha < 0 \implies 4\alpha > 1 \implies \alpha > 1$

Exactly one solution: $\mathbf{1} - \mathbf{4}\alpha = \mathbf{0} \Rightarrow \mathbf{4}\alpha = \mathbf{1} \Rightarrow \alpha = \mathbf{1}$

Two solutions: 1 - 4α > 0 \Rightarrow 4α < 1 \Rightarrow α < $\frac{1}{4}$

In case of two solutions, the roots are $x = \frac{-1 \pm \sqrt{1 - 4\alpha}}{2}$

In case of one solution, the root is $x = \frac{-1 \pm 0}{2} = \frac{-1}{2}$

2. Solve the following equations in the set of real numbers:

a.
$$\frac{-5}{7}q + \frac{5}{3}q^2 - \frac{20}{21} = 0$$
 multiply the whole equation by 21
- 15q + 35q² - 20 = 0 \Rightarrow 35q² - 15q - 20 = 0
a+b+c = 0 \Rightarrow q = 1 or q = c/a = -20/35 = -4/7

b.
$$\begin{cases} -\frac{3}{4}x + 8y - 37 = 0 \Rightarrow -3x + 32y - 148 = 0 \\ -35 + 8x + \frac{3}{5}y = 0 \Rightarrow 40x + 3y - 175 = 0 \end{cases}$$

the first one gives: $\mathbf{x} = \frac{32y - 148}{3}$; substitute this in the second

40 (
$$\frac{32y-148}{3}$$
) + 3y - 175 = 0 \Rightarrow 40 (32y - 148) + 9y - 525 = 0

1280 y - 5920 + 9y - 535 = 0
$$\Rightarrow$$
 1289y = 6445 \Rightarrow y = $\frac{6445}{1289}$ = 5

But
$$\mathbf{x} = \frac{32y - 148}{3} = \frac{32(5) - 148}{3} = \frac{12}{3} = 4 \Rightarrow (\mathbf{x}, \mathbf{y}) = (4,5)$$

c.
$$(\ln x)^2 + \ln x^2 - 1 = 0$$
 \Rightarrow $(\ln x)^2 + 2 \ln x - 1 = 0$

$$\ln x = \frac{-2 \pm \sqrt{4 - 4(1)(-1)}}{2} = \frac{-2 \pm \sqrt{8}}{2} = \frac{-2 \pm 2\sqrt{2}}{2} = -1 \pm \sqrt{2}$$

$$\ln x = -1 - \sqrt{2} \Rightarrow x = e^{-1 - \sqrt{2}} \text{ or } \ln x = -1 + \sqrt{2} \Rightarrow x = e^{-1 + \sqrt{2}}$$

d.
$$2e^{x^2} + 2x(2x-3)e^{x^2} = 0 \Rightarrow 2e^{x^2} + (4x^2 - 6x)e^{x^2} = 0$$

 $\Rightarrow e^{x^2}(2 + 4x^2 - 6x) = 0$ but $e^{x^2} \neq 0 \Rightarrow 4x^2 - 6x + 2 = 0$
 $a+b+c=0 \Rightarrow x=1$ or $x=c/a=2/4=1/2$

e.
$$\ln x + \ln y = 0 \Rightarrow \ln xy = 0 \Rightarrow xy = e^0 = 1 \Rightarrow y = \frac{1}{x}$$

 $x + y = 2 \Rightarrow x + \frac{1}{x} = 2 \Rightarrow x^2 - 2x + 1 = 0 \Rightarrow (x-1)^2 = 0 \Rightarrow x = 1$
 $y = 2 - x = 2 - 1 = 1 \Rightarrow (x, y) = (1, 1)$

f.
$$|7x-5|-1>10 \Rightarrow |7x-5|>11$$

 $\Rightarrow 7x-5<-11 \text{ or } 7x-5>11$
 $\Rightarrow x<-6/7 \text{ or } x>16/7$

g.
$$|8x+1| -13 < 4 \Rightarrow |8x+1| < 17 \Rightarrow -17 < 8x+1 < 17$$

\Rightarrow -18 < 8x < 16 \Rightarrow -18/8 < x < 2 \Rightarrow -9/4 < x < 2

h.
$$|x^2 - 4x + 1| = 4 \Rightarrow x^2 - 4x + 1 = \pm 4$$

Either $x^2 - 4x + 1 = -4 \Rightarrow x^2 - 4x + 5 = 0 \Rightarrow \text{No roots}$
Or $x^2 - 4x + 1 = 4 \Rightarrow x^2 - 4x - 3 = 0 \Rightarrow x = 2 \pm \sqrt{7}$

i.
$$5x - \frac{1}{x} = 4 \implies 5x^2 - 1 = 4x \implies 5x^2 - 4x - 1 = 0$$

 $a+b+c=0 \implies x=1 \text{ or } x=c/a=-1/5$

j.
$$\sqrt{2x-1} = 2-3x \Rightarrow 2x - 1 = (2-3x)^2 \Rightarrow 2x-1 = 4 - 12x + 9x^2 \Rightarrow 9x^2 - 14x + 5 = 0$$

 $a+b+c=0 \Rightarrow x=1 \text{ or } x=c/a=5/9$
Accepted solutions when : $2x-1 \ge 0 \Rightarrow x \ge \frac{1}{2}$
Therefore both are accepted being greater than $\frac{1}{2}$.

3. The demand for a commodity is given by : p(q + 1) = 231 and the supply is given by : p - q = 11 . Determine the equilibrium price and quantity.

Equilibrium price and quantity :
$$\mathbf{p}(\mathbf{q} + \mathbf{1}) = \mathbf{231} \Rightarrow \mathbf{p} = \frac{231}{\mathbf{q} + 1}$$

$$p - q = 11 \Rightarrow p = 11 + q$$

$$\mathbf{p} = \mathbf{p} \Rightarrow \frac{231}{q+1} = \mathbf{11} + \mathbf{q} \Rightarrow \mathbf{q^2} + \mathbf{12q} - \mathbf{220} = \mathbf{0} \Rightarrow (\mathbf{q} + \mathbf{22})(\mathbf{q} - \mathbf{10}) = \mathbf{0}$$
 since q can not be negative, $\mathbf{q} = \mathbf{10}$.Hence $\mathbf{p} = \mathbf{11} + \mathbf{q} = \mathbf{21}$

4. A monopolist's average cost function is given by $:2+3q-\frac{5}{q}$

Where **q** is the quantity produced, the demand function for the

good is
$$\mathbf{q} = \mathbf{10} - \frac{p}{2}$$

Determine expressions, in terms of ${\bf q}$, for the revenue and the profit and determine the value of ${\bf q}$ that maximizes the profit. Find the maximum profit.

Revenue = Demand \times Price = p \times q

$$q = 10 - \frac{p}{2} \Rightarrow p = -2q + 20$$

$$TR = q \times (-2q + 20) = -2q^2 + 20q$$

Profit = Revenue - Cost

$$AC = 2 + 3q - \frac{5}{q} \Rightarrow TC = q \times AC = 2q + 3q^2 - 5$$

Profit:
$$\Pi = TR-TC = -2q^2 + 20q - (2q + 3q^2 - 5)$$

$$\Pi = -5q^2 + 18q + 5$$

q=? so that Π is maximum : Vertex abscissa $\mathbf{q} = \frac{-b}{2a} = \frac{9}{5}$

$$\underline{\text{or}} \quad \frac{d\prod}{dq} = 0 \Rightarrow -10q + 18 = 0 \Rightarrow q = \frac{18}{10} = \frac{9}{5}$$

Maximum profit ?

$$\Pi = -5q^2 + 18q + 5 = -5\left(\frac{9}{5}\right)^2 + 18\left(\frac{9}{5}\right) + 5 = \frac{106}{5}$$

5. (20 Marks)

The inverse supply and demand functions for a market are given by the equations

$$p^{S}(q) = 2q + 3$$
 and $p^{D}(q) = -q^{2} - 2q + 8$,

respectively.

- (a) Write $p^{D}(q)$ in completed square form and determine the coordinates and nature of the turning point of the curve $p = p^{D}(q)$.
- (b) Determine the p and q-intercepts of the curves $p = p^{S}(q)$ and $p = p^{D}(q)$.
- (c) Find the points of intersection of the curves $p = p^{S}(q)$ and $p = p^{D}(q)$. Hence, deduce the equilibrium price and quantity for this market.
- (d) Sketch both of these curves on the same axes clearly indicating which parts of these curves are economically meaningful.

(a)
$$p = -q^2 - 2q + 8 = -q^2 - 2q - 1 + 9 = -(q^2 + 2q + 1) + 9$$

 $p = -(q+1)^2 + 9$
turning point is the vertex : $q = -b/2a = -1$ substitute
this in the equation : $p = 9$, vertex is V(-1,9)

5

(b) Intercepts of the supply curve :

p-intercept :
$$q = 0 \Rightarrow p = 3$$
 (0,3)

q- intercept:
$$p = 0 \Rightarrow q = -3/2 (-3/2,0)$$

Intercepts of the Demand curve:

p-intercept:
$$q = 0 \Rightarrow p = 10$$
 (0,10)
q- intercept: $p = 0 \Rightarrow -(q+1)^2 + 9 \Rightarrow (q+1)^2 = 9$
 $\Rightarrow q+1 = \pm 3 \Rightarrow q = 2 \text{ or } q = -4 : (2,0); (-4,0)$

(c) $p = p \Rightarrow -q^2 - 2q + 8 = 2q + 3 \Rightarrow -q^2 - 4q + 5 = 0$ $a+b+c=0 \Rightarrow q=1$ or q=c/a=-5 rejected i.e. $q=1 \Rightarrow p=2q+3=2(1)+3=5$

6.

A company has a profit function given by,

$$\pi(x) = -x^2 + 20x + 312,$$

where x denotes the quantity produced.

- (a) Write the function $\pi(x)$ in completed square form.
- (b) Find the x-intercepts and y-intercepts of the curve $y = \pi(x)$.
- (c) Find the value of x that gives the maximum profit. What is the maximum profit?
- (d) Use the above information to sketch the curve $y = \pi(x)$.
- (e) If the constant term in our expression for $\pi(x)$ is changed from 312 to 156, how does the answer to (c) change?
- (f) Given that the company has a linear cost function and that it costs \$620 to produce four units and \$700 to produce eight units, determine the cost, C(x), of producing x units.

(a)
$$\pi(x) = -(x^2 - 20x + 100) + 100 + 312$$

= -(x -10)² + 412

(b) x- intercept : y = 0
$$\Rightarrow$$
 - (x -10)² + 412 = 0
 \Rightarrow (x -10)² = 412 \Rightarrow x-10 = $\pm \sqrt{412}$
 \Rightarrow x = 10 $\pm \sqrt{412}$
y-intercept : x = 0 \Rightarrow y = 312 : (0,312)

- (c) Vertex : x = -b/2a = 10 maximises the profit. Maximum profit , substitute this in the equation: $\pi(10)$ = -100 + 200 + 312 = 412 .
- (d) See next page.
- (e) The vertex abscissa does not change , it is still x = -b/2a = 10The maximum profit becomes : $\pi(10) = -100 + 200 + 156 = 256$.
- (f) Linear cost function : C = aq + bFor q = 4, $C = 620 \Rightarrow 620 = 4a + b -----(1)$ For q = 8, $C = 700 \Rightarrow 700 = 8a + b -----(2)$ Solving simultaneously, by subtracting (1) from (2):

$$4a = 80 \implies a = 20$$
,
using (1): $b = 620 - 4a = 620 - 80 = 540$
 $\implies C = 20q + 540$

END of QUESTIONS