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SECTION A

Answer all six questions from this section (60 marks in total)

1. The supply equation for a good is ¢ = 2p and the demand equation is
g = 2400 — p, where g denotes quantity and p the price in dollars.
Determine the equilibrium price and quantity. Suppose a percentage
tax of 25% is imposed. Determine the new equilibrium price and
quantity. Determine also what excise (per-unit) tax would result in the
same equilibrium price.

2.(a) The function f(z,y) takes the form

floyy) = S
) w4 + y4 3

for some numbers a, 8 and 7. If f is homogeneous of degree D, what
must the values of a, 8 and v be (in terms of D)?

(b) Show that the function f (z,y) = ycos <E> is homogeneous, and verify
)
explicitly that it satisfies Euler’s equation.
. . 210 -
8. The demand equation for a good is p= ——F———% and the equilibrium
¢ +5¢+6

price is 5. Determine the equilibrium quantity and the consumer
surplus. If the elasticity of demand for the good is equal to 2 for every
value of the price, determine the demand function.

4. Use a matrix method to find all solutions to the following system of
equations

2z —y+z = 4

—z+3y+2z = 3
c+2y+3z =7
t—2y—z = —1
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7.(a)

(b)

A sequence z; satisfies
Ti41 = GT¢-1

forallt > 1, wherea > 0isa fixed number. If 7o = 1 and z, = 3+/a,
find a formula (in terms of ¢ and a) for z:.

The supply and demand functions for a good are, respectively,

() =2p, ¢°(p)=8—-2p.

Assuming that the initial price is p(0) =1, and that the price adjusts
over time according to the equation

% = (¢P(p) — )",

find a formula for p(¢). How does p(t) behave as ¢ tends to infinity?

SECTION B

Answer two questions from this section (20 marks each).

Find an invertible matrix P and a diagonal matrix D such that
P-1AP = D, where A is the matrix

5 1
2 4 )
Hence, or otherwise, find the functions f(z) and g(z) which are such

that f(0) =2, g(0) =1 and
4

Y 51w +olo
% = 2f(z) + 49(z).

Expand as a power series, in terms up to z%, the function given (for

z < 1) by f(z) = cos(In(1l — z)).
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8.(a) Sequences Ci, I, Gy and Y; are related as follows:

1
C: = th—l
1
I, = 100+-3—§(Y;—1—Y¥—2)
3
G: = 3—2-1’}_1

Y, = Ci+ L+ G

Find a second-order difference equation for Y;. Solve this equation to
determine Y; if Yy = 129 and Y; = 128.25.

(b) Consider the following system of equations.

z+y—3z = 4
2r—y+z = 3
r+4y+taz = b

Use matrix methods to determine what values a and b must take if this
system is consistent and has infinitely many solutions.

What must the value of a not be if the system has precisely one
solution?

What can be said about a and b if the system has no solutions?

9.(a) Find the inverse of the matrix

(

4
dz

DN =
L o =

JESIFOT Y

(b) The function f(x) satisfies

I

e +a*f+1+d’z+az

where @ > 1 is some fixed number. Furthermore, f(0) = 0 and df /dz
equals —2a — 1 when z = 0. Find the function f(2).
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10.(a) Determine the minimum value of

(b)

1
zy?2z3

subject to the constraint pz + qy + 1z = ¢, where p, q,r, ¢ > 0 are fixed
numbers.

Suppose that the supply and demand equations for a particular market

are, respectively,
p—3¢g=12, p+q=20.

Determine the supply function ¢°(p), the inverse supply function p%(gq),
the demand function ¢P(p) and the inverse demand function pP(q).

Suppose the suppliers operate according to the cobweb model, so that if
p: and ¢; are (respectively) the price and quantity in year ¢, then

v = pP(q.) and giy1 = ¢°(p:). Suppose also that the initial price is

po = 10. Find an expression for p;. How does p; behave as t tends to
infinity? How does g; behave as t tends to infinity?
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