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05b Revision Problems

1. Expand as a power series, in terms up to z*, the function

f(x)

€ ogdxly -1
(l—:::)_'_e (1—x)". t

o The function f(z,¥, z) takes the form

) oy + 22"
Ty, 2) = -
fley (wy + z4(y2)") /!

for some numbers a, 3,7, 9.

If th
B,

3. I(a)

e function is homogeneous of degree 2, determine expressions for
and § in terms of a.

The demand equation for a good is
p=113—-¢

and the supply equation is p —¢* —2¢ = 1.

Find the equilibrium price and quantity.

Calculate the consumer surplus and producer surplus at equilibrinm.

By separating the variables, find the function y(t) such that y(0) =2
. dy Y
dt 1+t

Suppose the supply and demand functions for a good are, respectively,
¢°(p) =5p -2, ¢”(p)=12-2p.

Determine the equilibrium price and quantity. A percentage sales tax of
100r% is imposed. (So, when a consumer buys one unit of the good at
a price p, an amount rp is tax.) Find the new equilibrium price and
quantity. Find also an expression for the amount of tax revenue.
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5  Suppose the demand function for a commodity is given by

(p* +8)*

Find the elasticity of demand, in terms of p. Determine the values of p
for which the demand is elastic.

6  Expand as a power series, in terms up to z°, the function

f(z) =1In (] +2$) ,

1+xz

7 The function

a, .2 2 2
Yzt + Z ST+ Y
flzy,2) =

| N (zy + 27)°

is homogeneous of degree 0. Find the values of v and § and derive a
relationship between « and 3.
[6 marks]

8 The demand equation for a good is p(¢ + 3) = 20 and the supply
equation is g —p+4 =0.

Find the equilibrium price and quantity.

Calculate the consumer surplus.

(b) Suppose that the price p(t) of a good varies continuously with time, and
that the quantities demanded and supplied are given, respectively, by

Pp)=1-2p, ¢°(p) = 2p.
Price adjusts according to the rule

dp 3
i (¢"(p) ~ ¢*(p))" .

Find an expression for p(t), given that when t = 0 the price is 1/8. How
does the price behave as t tends to infinity?
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9 (a) Express the following system of equations in matrix form. Then, using
a matrix method, show that there is exactly one value of ¢ for which the
system has infinitely many solutions. Find all the solutions in this case.

2r4+y—3z = 2
r—y+2z = 2
3z +3y+cz = 2.
What are the solutions for other values of ¢7 [10 marks]

b) Find the values of z and y that minimise the function
Y
f(z,y) = 82 + 8zy + 122 + 10y? + 10y + 20
Y Y Y

and verify that these values do indeed give a minimum. [10 marks|

10 (a) A consumer has utility function u(z;,zs) = z123 for two goods, X; and
X,. (Here, z; and x5 are, respectively, the amounts of X; and X,
consumed.) Suppose that each unit of X, costs $p; and each unit of X,
costs $po, and that the consumer has an amount $M to spend on X,
and X,. By using the Lagrange multiplier method, find expressions for
the quantities ] and z3 that maximise the utility function subject to
the budget constraint. [6 marks]

What is the corresponding Lagrange multiplier, \*? [2 marks]

If V = u(z}, z3) is the maximum achievable utility, what is the marginal

utility of income, ——7 [2 marks]
) 2 a_M { j

(b)  The following relationships hold between the sequences C, Y}, I;:

CE, = ].O+ gl/}_l

2 .
Iy = 50+ = (Yo — Yioo)

9
Y, = C,+1,.
2 r
Prove that Y, — Y,_; + §Y£ o = 60. [5 marks|
Given that Yy = 271 and Y; = 270, find an expression for Y;. [5 marks]
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11 (a) A market for a commodity is modelled by taking the demand and
supply functions, respectively, as follows:

¢*(p) = p,
In time period n, for n > 1, the price p, is related to the price in the
previous period p,_; by the equation:

1D(

Pn— Pn-1 = E(Q pn—l) - QS(Pn—lj) + C(‘“l)n;

where ¢ is a constant.

(i) Show that the price p, satisfies the equation:

1 1
= =P = — (—1)".
p 23) 1 4+6( )

[2 marks]

1 1\"
(ii) Show that if ¢ = 0, then for some constant A4, p, = 3 + A (5) .

[4 marks|

(iii) Suppose that po = 1. Solve the equation when ¢ = 3 by
substituting for p, the expression for p, obtained in (ii), plus a term of

the form d(—1)".
[4 marks]

12  (a) Find the function f(z) satisfying

af f _df
0)=3/2, —(0)=3/2, —% —5— =e” + 6.
=32 Loy=sp LY 16r=erro
(b) Find the inverse of the matrix
-2 1 2
2 2 5
2 13
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Use your result to find the solution to the system of equations

-2r+y+22 = a
20 + 2y + 52
2r+y+3z = ¢

I
<~

where a, b, ¢ are any numbers.

13 a Find the eigenvalues of the matrix

[an B ]
[P oy B ]
b W O

and obtain one eigenvector for each eigenvalue.

p (a) Find a function y(z) such that /(1) = 2 and

dy _ 2+ - 1)

dr 2x + x*
c Find the general solution to the differential equation
d? d
¢y _ 4_’9 + 4y e?t.
dt? dt

For a particular solution try y = at?e*.

d  Suppose that F(z,y) = zy+/(2zy + y?). Show that

dF oF

T + y—— 5 = 3F(x,y).
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14  An asset has just been purchased for one million dollars. It is believed
that the asset may be sold in t years time for a value V(t) (measured in
million dollars) given hy

1+ (t—-1)%).

Assuming an average annual interest rate of r = 4% this value has a

present value of
P(t) = e 0%V (1),

measured in millions of dollars of money of the present time. Show that

P(t) has two stationary points, one of which is very nearly ¢ =1 and
the other very nearly t = 51. By considering the sign of P’'(t), show
that the best time to sell the asset is very nearly { = 51 years.

15 (a) Find, using the product rule, the first-order partial derivatives, of
the function
f(z,y) = (& +9* - 2)(zy + 7).

Hence determine the stationary points of the function.(You will find it
helpful to consider the difference of the two first-order partial
derivatives.) Classify all the stationary points.

(b) Use the Lagrange Multiplier Method to maximize

2VT + 6y — 2

subject to
Tt+y=c+z,

for z,y.z = 0, where ¢ is a positive constant and ¢ < 10.

16 (a) Use an integrating factor to solve the differential equation
dy zc+1
=4 2y =2z
dz z 7

(b) Find the inverse of the matrix

2 -2 0
—1 3 0]
0] 1 -2
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¢ Determine the value of the constant a for which the following
system of equations has a solution, and find the solution when a takes
this value.

z+y+2z = 3

—r—y—z = —4
3z—y+z = 6
r+z = a.
17 (a) The functions f(¢) and g(t) are related as follows:
df .
== 2f(t) + 2g(t
T~ —of(t) + 200
dg
ST~ of(t) + 39(t).
7 f(t) +39(t)
Show that 2f df
Y=o

Hence find f(t) and g(¢) if f(0) = 3 and ¢(0) = 3.

Show that f(t) and g(¢) will approach 0 as ¢ tends to infinity precisely
when the initial values of f and g satisfy f(0) = 2¢(0).

(b) Find the sequence y; such that yo = 1,7, = 0 and

Yo — 2Y1—1 + 2y = 0.

7 0 -3 3
A=1[1 6 b v=| =7
5 0 -1 5

(a) Show that v is an eigenvector of A and find the corresponding eigenvalue.

18
Let

(b) Find the other eigenvalues of A. Hence find an invertible matrix P and a

diagonal matrix D such that P 'AP = D.
Check that AP = PD.
Find P 1.
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19_ A market for a commodity is modelled by the supply and demand functions

defined as follows:
*(p) =p, ¢°(p) =3 -p

T'he price change p; — p,—, depends on the excess demand in the previous two periods

according to the equation:

Pt — Pt—1 = g (G’D(Iiz—l) - QS(Pt—l)) - % (QD(Pt—z) - QS(Pt—z))-

Find a formula for p,, given that py = 5 and p, = 1.

Describe in words the behaviour of p; as ¢ increascs.

( 20 Find the Taylor expansion about z =3 of the function
g(z)=In(l14+z)—V1+=z

up to and including the quadratic term.
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21 (a) (i) Find the eigenvalues and the corresponding eigenvectors of the matrix

5 3
(5 2

(i) Find explicit formulae for the sequences z;, y; that satisfy the system of recurrence
equations
Ty = 0xy_1 + 3yt

Y= —6x41 — 4y

and the initial conditions zo = 2, yg = 3.

(iii) Find the functions z(t), y(¢) that satisfy the system of differential equations
' (t) = 5a(t) + 3y(t)
yi(t) = —55»“( ) — 4y(t)

and the initial conditions z(0) = 2, y(0) = 3.

~(b) If Yp=10 and Y; =4, find an expression for the solution Y; of the equation
i+ Y1 +Yio=18

Describe carefully the behaviour of ¥} as t — o<.

Find the value of Ys0-

22 (a) Suppose that consumption this year, C;, is the average of this year’s income, Y;,
and last year’s consumption and that next year’s income equals current investment, Iy;
that is,

1
Cy= ‘2'(Yc + Ci-1) and Yijpn=1,.
Assuming the usual equilibrium condition, ¥; = C;+1I;, show that Y; satisfies the following
equation,
1
K—K_1+§Y;_2=0.

Given the initial conditions Yy = 60 and Y7 = 80, find an expression for Y¥; which satisfies
this equation.

Describe the long term behaviour of Y; as t — oo.
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23 Find the Taylor series expansion about z = 0 of the function

f(z) = In(1 + z°)
up to and including terms of degree 3 in z.

24  TFind the general solution of

5 3
yt+2+§y:+1—§yt=80 t=0,1,2,....

If yo = 100, determine a value of y; so that y; approaches a finite limit as ¢ — oo, and

state what this finite limit is.

25
(a) The balance B(t) of a bank account at time ¢ is subject to continuous

compounding and a net outflow and satisfies the differential equation

B _ B(t) , _,

dt 20
The balance at time 0 is P. By solving this differential equation, find B(t).

Suppose that P = 300. Show that the balance B(t) initially increases, to a maximum
value, and thereafter decreases.
26 The function f(z,y) is defined for z,y > 0 by
ze®
ya

flz,y) =

lere a is a fixed real number.

nd expressions for the partial derivatives

of of 9 8f
oz’ 8y’ 0z?' Gy*

termine the values of a for which the function will satisfy the equation

52f 232f
i T e |
3233:2 y Ay? 12f

10
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27 Find the general solution to the differential equation

28

d3f d*f  df S
g3 T lggr g T

— —

(a) Find the eigenvalues and the corresponding eigenvectors for the matrix A-

9 5
A= (--10 —-6)'

Find an invertible matrix P and a diagonal matrix D such that P~'AP = D.
Check that AP = PD.

(b) Consider the system of recurrence equations x, = AX,_1,

Iy :Qrt 1 "‘5'9'1—1 % (It)
t = -

Y = —-1024-; — Gyt_l Yt

Find expressions for the sequences z; and y, which satisfy these equations and the

initial conditions 20 = 1, g == 0.

(c) Now consider the system of second order recurrence equations wy = Aw;_ 3,

ny = 91{;;_2 + 523_2 i
W = .
Zy = —lUw;,.-z - ﬁzt_..z Zt

Set w, = Pu; where P is the matrix you found in part (a), to define new sequences

w, = (“’*) =P (“t) = Pu,.
<t Ut

Show that the sequences u; and v, satisfy second-order recurrence equations of the

u¢ and v, such that

form

U = AUy_o , vy == bug_o

for some constants @ and b. Find the nmmbers a and b and write down the equations.

Find a general solution of each of these equations (sequences w; and vy).

Hence, or otherwise, find a general solution of w; == Aw,_, (sequences w, and z;).

11
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29
(a) The function f(z,y) is given by

f(z,y) = cos(nz) sin(y?),

where n is a positive integer. Find

of of o &
dzr’ Oy’ 9z’ 0Oy?

Find the value of n if f satisfies

SO Of

y8I2 QW’F@-——O

(b) The inverse demand function for a product is

and the inverse supply function is

p=q-— 1L

Here, p denotes price and ¢ denotes quantity. Find the equilibrium price and

quantity, and calculate the consumer surplus.

12
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30 Counsider the following differential equation:

Bf L ddf
d Cdpr e T

2f = 4x.
(i). Find the general solution of the differential equation.

(i1) Find the function f which satisfies the differential equation and which is such that

f(0)=0, f(0)=2and f"(0) = 4.

Describe the behaviour of this particular solution as z tends to infinity.

31

Use the method of Lagrange multipliers to find possible maximum or minimum
points of the function
flzy)=z+y

subject to the constraints

I2—4$y+:.';2:—2, z>0, y=>0

32 Consider the following system of equations, where A is a constant, A € R,

z+2y+2=0
Jz+5y+2z=1
y+Az=2.
(i) Find all values of A for which the system of equations is consistent.
If the system is consistent, is the solution unique? Justify your answer.

(i1) In the case(s) that the above system has a unique solution, solve the system using
any matrix method (Gaussian elimination, Cramer’s rule, or inverse matrix) and hence

write down expressions for z,y, z in terms of A

13



34
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33 Find the eigenvalues and the corresponding eigenvectors for the matrix A,

-6 —10
A=
(5 ")
Find an invertible matrix P and a diagonal matrix DD such that P~'AP = D.
Check that AP = PD.

(b) Consider the system of difference equations x; — Ax;_;,

2y = =6z — 10y Ty

Xy = . . .
Ye = Dxy 1 + Yy L

Find expressions for the sequences x, and y, which satisfy these equations and the

initial conditions zg = 1, yg = 0.

{c) Suppose that the functions y;(z) and y2(z) satisfy the second order differential

equations ¥v” = Ay,

dzyl
= —06yy, — 10
dxg I Y2
d2y2
— = by; + 9y, .
d,’l’:z Y Y2

Set y = Pz where P is the matrix you found in part (a), to define new functions z;(z)

and zy(x),

= () = (23 -

Yo \ z2(z)
(1) Show that the functions z;(x) and zy(z) satisfy second-order differential equations
of the form .
d2.2'| dz Z9
=az,
dz? b dx?

for some constants a and b. Find the numbers a and b and write down the equations.

= bZQ

(ii) Solve these equations for z)(z) and z;(z). Hence, or otherwise, find a general

solution for y;(z) and ya(z).

Suppose the supply and demand functions for a good are, respectively,

$(p)=12p—6, ¢°(p) =12—6p.

unit (or excise)

i ilibrium price and quantity. A per-
Determine the equilib P o Bind

tax of T is imposed. Find the new equilibrium price and q
also an expression for the amount of tax revenue.

14



