05b Revision Problems

1. Expand as a power series, in terms up to x^3 , the function

$$f(x) = \frac{e^{2x}}{(1-x)} = e^{2x}(1-x)^{-1}.$$

ł

2. The function f(x, y, z) takes the form

$$f(x,y,z) = \frac{x^{\alpha}y + y^2z^{\beta}}{\left(xy^{\gamma} + x^4(yz)^{\delta}\right)^{1/4}}$$

for some numbers $\alpha, \beta, \gamma, \delta$.

If the function is homogeneous of degree 2, determine expressions for β , γ and δ in terms of α .

3. 1 (a) The demand equation for a good is

$$p = 113 - q^2$$

and the supply equation is $p - q^2 - 2q = 1$.

Find the equilibrium price and quantity.

Calculate the consumer surplus and producer surplus at equilibrium.

(b) By separating the variables, find the function y(t) such that y(0) = 2 and

$$\frac{dy}{dt} = \frac{-ty^2}{\sqrt{1+t^2}}.$$

4. Suppose the supply and demand functions for a good are, respectively,

$$q^{S}(p) = 5p - 2, \quad q^{D}(p) = 12 - 2p.$$

Determine the equilibrium price and quantity. A percentage sales tax of 100r% is imposed. (So, when a consumer buys one unit of the good at a price p, an amount rp is tax.) Find the new equilibrium price and quantity. Find also an expression for the amount of tax revenue.

1

5 Suppose the demand function for a commodity is given by

$$q = \frac{p}{(p^2 + 8)^3}.$$

Find the elasticity of demand, in terms of p. Determine the values of p for which the demand is elastic.

6 Expand as a power series, in terms up to x^5 , the function

$$f(x) = \ln\left(\frac{1+2x}{1+x}\right).$$

7 The function

$$f(x,y,z) = \frac{x^{\alpha}y^{\beta}z^2 + z\sqrt{x^2 + y^2}}{(xy + z^{\gamma})^{\delta}}$$

is homogeneous of degree 0. Find the values of γ and δ and derive a relationship between α and β .

[6 marks]

8 The demand equation for a good is p(q+3) = 20 and the supply equation is q - p + 4 = 0.

Find the equilibrium price and quantity.

Calculate the consumer surplus.

(b) Suppose that the price p(t) of a good varies continuously with time, and that the quantities demanded and supplied are given, respectively, by

$$q^{D}(p) = 1 - 2p, \quad q^{S}(p) = 2p.$$

Price adjusts according to the rule

$$\frac{dp}{dt} = \left(q^D(p) - q^S(p)\right)^3.$$

Find an expression for p(t), given that when t = 0 the price is 1/8. How does the price behave as t tends to infinity?

9 (a) Express the following system of equations in matrix form. Then, using a matrix method, show that there is exactly one value of c for which the system has infinitely many solutions. Find all the solutions in this case.

$$2x + y - 3z = 2$$
$$x - y + 2z = 2$$
$$3x + 3y + cz = 2.$$

What are the solutions for other values of c?

[10 marks]

(b) Find the values of x and y that minimise the function

$$f(x,y) = 8x^2 + 8xy + 12x + 10y^2 + 10y + 20$$

and verify that these values do indeed give a minimum. [10 marks]

10 (a) A consumer has utility function $u(x_1, x_2) = x_1 x_2^2$ for two goods, X_1 and X_2 . (Here, x_1 and x_2 are, respectively, the amounts of X_1 and X_2 consumed.) Suppose that each unit of X_1 costs p_1 and each unit of X_2 costs p_2 , and that the consumer has an amount M to spend on X_1 and X_2 . By using the Lagrange multiplier method, find expressions for the quantities x_1^* and x_2^* that maximise the utility function subject to the budget constraint.

What is the corresponding Lagrange multiplier, λ^* ? [2 marks]

If $V=u(x_1^*,x_2^*)$ is the maximum achievable utility, what is the marginal utility of income, $\frac{\partial V}{\partial M}$? [2 marks]

(b) The following relationships hold between the sequences C_t, Y_t, I_t :

$$C_t = 10 + \frac{7}{9}Y_{t-1}$$

$$I_t = 50 + \frac{2}{9}(Y_{t-1} - Y_{t-2})$$

$$Y_t = C_t + I_t.$$

Prove that $Y_t - Y_{t-1} + \frac{2}{9}Y_{t-2} = 60.$ [5 marks]

Given that $Y_0 = 271$ and $Y_1 = 270$, find an expression for Y_t . [5 marks]

11 (a) A market for a commodity is modelled by taking the demand and supply functions, respectively, as follows:

$$q^D(p) = 1 - p,$$

$$q^S(p) = p,$$

In time period n, for $n \ge 1$, the price p_n is related to the price in the previous period p_{n-1} by the equation:

$$p_n - p_{n-1} = \frac{1}{4} (q^D(p_{n-1}) - q^S(p_{n-1})) + c(-1)^n,$$

where c is a constant.

(i) Show that the price p_n satisfies the equation:

$$p_n - \frac{1}{2}p_{n-1} = \frac{1}{4} + c(-1)^n.$$

[2 marks]

- (ii) Show that if c = 0, then for some constant A, $p_n = \frac{1}{2} + A\left(\frac{1}{2}\right)^n$. [4 marks]
- (iii) Suppose that $p_0 = 1$. Solve the equation when c = 3 by substituting for p_n the expression for p_n obtained in (ii), plus a term of the form $d(-1)^n$.

[4 marks]

12 (a) Find the function f(x) satisfying

$$f(0) = 3/2$$
, $\frac{df}{dx}(0) = 3/2$, $\frac{d^2f}{dx^2} - 5\frac{df}{dx} + 6f = e^x + 6$.

(b) Find the inverse of the matrix

$$\begin{pmatrix} -2 & 1 & 2 \\ 2 & 2 & 5 \\ 2 & 1 & 3 \end{pmatrix}$$

Use your result to find the solution to the system of equations

$$-2x + y + 2z = a$$
$$2x + 2y + 5z = b$$
$$2x + y + 3z = c.$$

where a, b, c are any numbers.

13 a Find the eigenvalues of the matrix

$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 5 & 3 \\ 0 & 3 & 2 \end{pmatrix}$$

and obtain one eigenvector for each eigenvalue.

b (a) Find a function y(x) such that y'(1) = 2 and

$$\frac{dy}{dx} = \frac{(x+1)(y^2-1)}{2x+x^2}.$$

c Find the general solution to the differential equation

$$\frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 4y = 2e^{2t}.$$

For a particular solution try $y = at^2e^{2t}$.

d Suppose that $F(x,y) = xy\sqrt{(2xy+y^2)}$. Show that

$$x\frac{\partial F}{\partial x} + y\frac{\partial F}{\partial y} = 3F(x, y).$$

An asset has just been purchased for one million dollars. It is believed that the asset may be sold in t years time for a value V(t) (measured in million dollars) given by

$$V(t) = \frac{1}{2} (1 + (t-1)^2).$$

Assuming an average annual interest rate of r=4% this value has a present value of

$$P(t) = e^{-0.04t}V(t),$$

measured in millions of dollars of money of the present time. Show that

- P(t) has two stationary points, one of which is very nearly t=1 and the other very nearly t=51. By considering the sign of P'(t), show that the best time to sell the asset is very nearly t=51 years.
- (a) Find, using the product rule, the first-order partial derivatives, of the function

$$f(x,y) = (x^2 + y^2 - 2)(xy + 7).$$

Hence determine the stationary points of the function. (You will find it helpful to consider the difference of the two first-order partial derivatives.) Classify all the stationary points.

(b) Use the Lagrange Multiplier Method to maximize

$$2\sqrt{x} + 6\sqrt{y} - z$$

subject to

$$x + y = c + z$$

for $x, y, z \ge 0$, where c is a positive constant and c < 10.

16 (a) Use an integrating factor to solve the differential equation

$$\frac{dy}{dx} + 2\frac{x^2 + 1}{x}y = x.$$

(b) Find the inverse of the matrix

$$\begin{pmatrix}
2 & -2 & 0 \\
-1 & 3 & 0 \\
0 & 1 & -2
\end{pmatrix}$$

 \mathbf{c} Determine the value of the constant a for which the following system of equations has a solution, and find the solution when a takes this value.

$$x + y + 2z = 5$$

$$-x - y - z = -4$$

$$3x - y + z = 6$$

$$x + z = a$$

17 (a) The functions f(t) and g(t) are related as follows:

$$\frac{df}{dt} = -2f(t) + 2g(t)$$

$$\frac{dg}{dt} = -2f(t) + 3g(t).$$

Show that

$$\frac{d^2f}{dt^2} - \frac{df}{dt} - 2f = 0.$$

Hence find f(t) and g(t) if f(0) = 3 and g(0) = 3.

Show that f(t) and g(t) will approach 0 as t tends to infinity precisely when the initial values of f and g satisfy f(0) = 2g(0).

(b) Find the sequence y_t such that $y_0 = 1, y_1 = 0$ and

$$y_t - 2y_{t-1} + 2y_{t-2} = 0.$$

18

Let

$$\mathbf{A} = \begin{pmatrix} 7 & 0 & -3 \\ 1 & 6 & 5 \\ 5 & 0 & -1 \end{pmatrix} \qquad \mathbf{v} = \begin{pmatrix} 3 \\ -7 \\ 5 \end{pmatrix}$$

- (a) Show that v is an eigenvector of A and find the corresponding eigenvalue.
- (b) Find the other eigenvalues of **A**. Hence find an invertible matrix **P** and a diagonal matrix **D** such that $P^{-1}AP = D$.

Check that AP = PD.

Find \mathbf{P}^{-1} .

A market for a commodity is modelled by the supply and demand functions defined as follows:

$$q^{S}(p) = p, q^{D}(p) = 3 - p$$

The price change $p_t - p_{t-1}$ depends on the excess demand in the previous two periods according to the equation:

$$p_t - p_{t-1} = \frac{3}{8} \left(q^D(p_{t-1}) - q^S(p_{t-1}) \right) - \frac{1}{16} \left(q^D(p_{t-2}) - q^S(p_{t-2}) \right).$$

Find a formula for p_l , given that $p_0 = \frac{5}{2}$ and $p_1 = 1$.

Describe in words the behaviour of p_t as t increases.

(20 Find the Taylor expansion about x=3 of the function

$$g(x) = \ln(1+x) - \sqrt{1+x}$$

up to and including the quadratic term.

21 (a) (i) Find the eigenvalues and the corresponding eigenvectors of the matrix

$$\mathbf{A} = \begin{pmatrix} 5 & 3 \\ -6 & -4 \end{pmatrix}.$$

(ii) Find explicit formulae for the sequences x_t , y_t that satisfy the system of recurrence equations

$$x_t = 5x_{t-1} + 3y_{t-1}$$

$$y_t = -6x_{t-1} - 4y_{t-1}$$

and the initial conditions $x_0 = 2$, $y_0 = 3$.

(iii) Find the functions x(t), y(t) that satisfy the system of differential equations

$$x_1'(t) = 5x(t) + 3y(t)$$

$$y_1'(t) = -6x(t) - 4y(t)$$

and the initial conditions x(0) = 2, y(0) = 3.

(b) If $Y_0 = 10$ and $Y_1 = 4$, find an expression for the solution Y_t of the equation

$$Y_t + Y_{t-1} + Y_{t-2} = 18.$$

Describe carefully the behaviour of Y_t as $t \to \infty$.

Find the value of Y_{450} .

22 (a) Suppose that consumption this year, C_t , is the average of this year's income, Y_t , and last year's consumption and that next year's income equals current investment, I_t ; that is,

$$C_t = \frac{1}{2}(Y_t + C_{t-1})$$
 and $Y_{t+1} = I_t$.

Assuming the usual equilibrium condition, $Y_t = C_t + I_t$, show that Y_t satisfies the following equation,

$$Y_t - Y_{t-1} + \frac{1}{2}Y_{t-2} = 0.$$

Given the initial conditions $Y_0 = 60$ and $Y_1 = 80$, find an expression for Y_t which satisfies this equation.

Describe the long term behaviour of Y_t as $t \to \infty$.

23 Find the Taylor series expansion about x = 0 of the function

$$f(x) = \ln(1+x^3)$$

up to and including terms of degree 3 in x.

24 Find the general solution of

$$y_{t+2} + \frac{5}{3}y_{t+1} - \frac{3}{2}y_t = 80$$
 $t = 0, 1, 2, \dots$

If $y_0 = 100$, determine a value of y_1 so that y_t approaches a finite limit as $t \to \infty$, and state what this finite limit is.

25

(a) The balance B(t) of a bank account at time t is subject to continuous compounding and a net outflow and satisfies the differential equation

$$\frac{dB}{dt} = \frac{B(t)}{20} - t - 2.$$

The balance at time 0 is P. By solving this differential equation, find B(t).

Suppose that P = 300. Show that the balance B(t) initially increases, to a maximum value, and thereafter decreases.

26 The function f(x, y) is defined for x, y > 0 by

$$f(x,y) = \frac{xe^{2x}}{y^a},$$

iere a is a fixed real number.

nd expressions for the partial derivatives

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$.

termine the values of a for which the function will satisfy the equation

$$3x\frac{\partial^2 f}{\partial x^2} - xy^2 \frac{\partial^2 f}{\partial y^2} = 12f.$$

27 Find the general solution to the differential equation

$$\frac{d^3f}{dx^3} - 2\frac{d^2f}{dx^2} + \frac{df}{dx} - 2f = e^{-x}.$$

28 (a) Find the eigenvalues and the corresponding eigenvectors for the matrix A:

$$\mathbf{A} = \begin{pmatrix} 9 & 5 \\ -10 & -6 \end{pmatrix}.$$

Find an invertible matrix **P** and a diagonal matrix **D** such that $P^{-1}AP = D$. Check that AP = PD.

(b) Consider the system of recurrence equations $\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1}$,

$$x_t = 9x_{t-1} + 5y_{t-1}$$

 $y_t = -10x_{t-1} - 6y_{t-1}$ $\mathbf{x}_t = \begin{pmatrix} x_t \\ y_t \end{pmatrix}$.

Find expressions for the sequences x_t and y_t which satisfy these equations and the initial conditions $x_0 = 1$, $y_0 = 0$.

(c) Now consider the system of second order recurrence equations $\mathbf{w}_t = \mathbf{A}\mathbf{w}_{t-2}$,

$$\begin{aligned} w_t &= 9w_{t-2} + 5z_{t-2} \\ z_t &= -10w_{t-2} - 6z_{t-2} \end{aligned} \qquad \mathbf{w}_t = \left(\begin{array}{c} w_t \\ z_t \end{array} \right). \end{aligned}$$

Set $\mathbf{w}_t = \mathbf{P}\mathbf{u}_t$ where \mathbf{P} is the matrix you found in part (a), to define new sequences u_t and v_t such that

$$\mathbf{w}_t = \begin{pmatrix} w_t \\ z_t \end{pmatrix} = \mathbf{P} \begin{pmatrix} u_t \\ v_t \end{pmatrix} = \mathbf{P} \mathbf{u}_t.$$

Show that the sequences u_t and v_t satisfy second-order recurrence equations of the form

$$u_t = au_{t-2}, \qquad v_t = bv_{t-2}$$

for some constants a and b. Find the numbers a and b and write down the equations. Find a general solution of each of these equations (sequences u_t and v_t).

Hence, or otherwise, find a general solution of $\mathbf{w}_t = \mathbf{A}\mathbf{w}_{t-2}$ (sequences w_t and z_t).

11

29

(a) The function f(x, y) is given by

$$f(x,y) = \cos(nx)\sin(y^2),$$

where n is a positive integer. Find

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$.

Find the value of n if f satisfies

$$y^{3}\frac{\partial^{2} f}{\partial x^{2}} - y\frac{\partial^{2} f}{\partial y^{2}} + \frac{\partial f}{\partial y} = 0.$$

(b) The inverse demand function for a product is

$$p = \frac{7}{q+5}$$

and the inverse supply function is

$$p = q - 1$$
.

Here, p denotes price and q denotes quantity. Find the equilibrium price and quantity, and calculate the consumer surplus.

30 Consider the following differential equation:

$$\frac{d^3f}{dx^3} - 3\frac{d^2f}{dx^2} + 4\frac{df}{dx} - 2f = 4x.$$

- (i) Find the general solution of the differential equation.
- (ii) Find the function f which satisfies the differential equation and which is such that

$$f(0) = 0$$
, $f'(0) = 2$ and $f''(0) = 4$.

Describe the behaviour of this particular solution as x tends to infinity.

31

Use the method of Lagrange multipliers to find possible maximum or minimum points of the function

$$f(x,y) = x + y$$

subject to the constraints

$$x^2 - 4xy + y^2 = -2$$
, $x \ge 0$, $y \ge 0$.

32 Consider the following system of equations, where λ is a constant, $\lambda \in \mathbb{R}$,

OV.

$$\begin{cases} x + 2y + z = 0 \\ 3x + 5y + 2z = 1 \\ y + \lambda z = 2. \end{cases}$$

- (i) Find all values of λ for which the system of equations is consistent. If the system is consistent, is the solution unique? Justify your answer.
- (ii) In the case(s) that the above system has a unique solution, solve the system using any matrix method (Gaussian elimination, Cramer's rule, or inverse matrix) and hence write down expressions for x, y, z in terms of λ .

33 Find the eigenvalues and the corresponding eigenvectors for the matrix A,

$$\mathbf{A} = \begin{pmatrix} -6 & -10 \\ 5 & 9 \end{pmatrix}$$

Find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$. Check that AP = PD.

(b) Consider the system of difference equations $\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1}$,

$$\begin{aligned} x_t &= -6x_{t-1} - 10y_{t-1} \\ y_t &= 5x_{t-1} + 9y_{t-1} \end{aligned} \qquad \mathbf{x}_t = \begin{pmatrix} x_t \\ y_t \end{pmatrix}.$$

Find expressions for the sequences x_t and y_t which satisfy these equations and the initial conditions $x_0 = 1$, $y_0 = 0$.

(c) Suppose that the functions $y_1(x)$ and $y_2(x)$ satisfy the second order differential equations y'' = Ay,

$$\frac{d^2y_1}{dx^2} = -6y_1 - 10y_2$$
$$\frac{d^2y_2}{dx^2} = 5y_1 + 9y_2.$$

Set $\mathbf{y} = \mathbf{P}\mathbf{z}$ where \mathbf{P} is the matrix you found in part (a), to define new functions $z_1(x)$ and $z_2(x)$,

$$\mathbf{y} = \begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix} = \mathbf{P} \begin{pmatrix} z_1(x) \\ z_2(x) \end{pmatrix} = \mathbf{Pz}.$$

(i) Show that the functions $z_1(x)$ and $z_2(x)$ satisfy second-order differential equations of the form

$$\frac{d^2z_1}{dx^2} = az_1, \qquad \frac{d^2z_2}{dx^2} = bz_2$$

for some constants a and b. Find the numbers a and b and write down the equations.

- (ii) Solve these equations for $z_1(x)$ and $z_2(x)$. Hence, or otherwise, find a general solution for $y_1(x)$ and $y_2(x)$.
- 34 Suppose the supply and demand functions for a good are, respectively,

$$q^S(p) = 12p - 6, \quad q^D(p) = 12 - 6p.$$

Determine the equilibrium price and quantity. A per-unit (or excise) tax of T is imposed. Find the new equilibrium price and quantity. Find also an expression for the amount of tax revenue.