1 - اللدوال القى تحتوى على $a x$ + a وتكون درجة هذه العبارة عدداً صحياً

1) $\int \frac{d x}{a+b x}=\frac{1}{b} \ln (a+b x)+C$.
2) $\int(a+b x)^{n} d x=\frac{(a+b x)^{n+1}}{b(n+1)}+C, n \neq-1$.
3) $\int \frac{x d x}{1+b x}=\frac{1}{b^{2}}[a+b x-a \ln (a+b x)]+C$.
4) $\int \frac{x^{2} d x}{a+b x}=\frac{1}{b^{3}}\left[\frac{1}{2}(a+b x)^{2}-2 a(a+b x)+a^{2} \ln (a+b x)\right]+C$.
5) $\int \frac{d x}{x(a+b x)}=-\frac{1}{a} \ln \frac{a+b x}{x}+C$.
6) $\int \frac{d x}{x^{2}(a+b x)}=-\frac{1}{a x}+\frac{b}{a^{2}} \ln \frac{a+b x}{x}+C$.
7) $\int \frac{x d x}{(a+b x)^{2}}=\frac{1}{b^{2}}\left[\ln (a+b x)+\frac{a}{a+b x}\right]+C$.
8) $\int \frac{x^{2} d x}{(a+b x)^{2}}=\frac{1}{b^{3}}\left[a+b x-2 a \ln (a+b x)-\frac{a^{2}}{a+b x}\right]+C$.
9) $\int \frac{d x}{x(a+b x)^{2}}=\frac{1}{a(a+b x)}-\frac{1}{a^{2}} \ln \frac{a+b x}{x}+C$.
10) $\int \frac{x d x}{(a+b x)^{3}}=\frac{1}{b^{2}}\left[-\frac{1}{a+b x}+\frac{a}{2(a+b x)^{2}}\right]+C$.
11) $\int \frac{d x}{1+x^{2}}=\arctan x+C$.
12) $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \arctan \frac{x}{a}+C$.
13) $\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \ln \frac{a+x}{a-x}+C$
14) $\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \ln \frac{x+a}{x-a}+C$.
15) $\int \frac{d x}{a+b x^{2}}=\frac{1}{\sqrt{a b}} \arctan x \sqrt{\frac{b}{a}}+C_{(a>0, b>0}$ écos $)$
 غتلفتى الإشارة فإنا نستخلم الطاذة 16 .
16) $\int \frac{d x}{a-b x^{2}}=\frac{1}{2 \sqrt{a b}} \ln \frac{\sqrt{a}+x \sqrt{b}}{\sqrt{a}-x \sqrt{b}}+C$.
17) $\int \frac{x d x}{a+b x^{2}}=\frac{1}{2 b} \ln \left(x^{2}+\frac{a}{b}\right)+C$.
18) $\int \frac{x^{2} d x}{a+b x^{2}}=\frac{x}{b}-\frac{a}{b} \int \frac{d x}{a+b x^{2}}$,

انظر بعد ذلك رتم 15 أو رتم 16 .
19) $\int \frac{d x}{x\left(a+b x^{2}\right)}=\frac{1}{2 a} \ln \frac{x^{2}}{a+b x^{2}}+C$.
20) $\int \frac{d x}{x^{2}\left(a+b x^{2}\right)}=-\frac{1}{a x}-\frac{b}{a} \int \frac{d x}{a+b x^{2}}$,

انظر بعد ذلك رتم 15 او, رتم 16
21) $\int \frac{d}{\left(a+b x^{2}\right)^{2}}=\frac{x}{2 a\left(a+b x^{2}\right)}+\frac{1}{2 a} \int \frac{d x}{a+b x^{2}}$,

انظر بمد ذلك رقم 15 أو رتم 16 .
$\sqrt{a+b x}$
22) $\int \sqrt{a+b x} d x=\frac{2}{3 b} \sqrt{(a+b x)^{3}}+C$.
23) $\int x \sqrt{a+b x} d x=-\frac{2(2 a-3 b x) \sqrt{(a+b x)^{3}}}{15 b^{2}}+C$.
24) $\int x^{2} \sqrt{a+b x} d x=\frac{2\left(8 a^{2}-12 a b x+15 b^{2} x^{2}\right) \sqrt{(a+b x)^{3}}}{105 b^{3}}+C$.
25) $\int \frac{x d x}{\sqrt{a+b x}}=-\frac{2(2 a-b x)}{3 b^{2}} \sqrt{a+b x}+C$.
26) $\int \frac{x^{2} d x}{\sqrt{a+b x}}=\frac{2\left(8 a^{2}-4 a b x+3 b^{2} x^{2}\right)}{15 b^{3}} \sqrt{a+b x}+C$.
27) $\int \frac{d x}{x \sqrt{a+b x}}=-\frac{1}{\sqrt{a}} \ln \frac{\sqrt{a+b x}-\sqrt{a}}{\sqrt{\sqrt{a+b x}}+\sqrt{a}}+C \quad(a>0$ (عندa) $)$
28) $\int \frac{d x}{x \sqrt{a+b x}}=\frac{2}{\sqrt{-a}} \arctan \sqrt{\frac{a+b x}{-a}}+C \quad(a<0 \quad$ عندم تكون $)$
29) $\int \frac{d x}{x^{2} \sqrt{a+b x}}=\frac{-\sqrt{a+b x}}{a x}-\frac{b}{2 a} \int \frac{d x}{x \sqrt{a+b x}}$,
30) $\int \frac{\sqrt{a+b x} d x}{x}=2 \sqrt{a+b x}+a \int \frac{d x}{x \sqrt{\frac{a+b x}{a}}}$,

انظر بمد ذلك رتم 27 أو رتم 28 .
$\sqrt{x^{2}+a^{2}}$
31) $\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C$
32) $\int \sqrt{\left(x^{2}+a^{2}\right)^{3}} d x=\frac{x}{8}\left(2 x^{2}+5 a^{2}\right) \sqrt{x^{2}+a^{2}}+$
$+\frac{3 a^{4}}{8} \ln x+\sqrt{x^{2}+a^{2}}+C$.
33) $\int x \sqrt{x^{2}+a^{2}} d x=\frac{\sqrt{\left(x^{2}+a^{2}\right)^{3}}}{3}+C$.
34) $\int x^{2} \sqrt{x^{2}+a^{2}} d x=\frac{x}{8}\left(2 x^{2}+a^{2}\right) \sqrt{x^{2}+a^{2}}-$

$$
-\frac{a^{4}}{8} \ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C .
$$

35) $\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C$.
36) $\int \frac{a x}{\sqrt{\left(x^{2}+a^{2}\right)^{3}}}=\frac{x}{a^{2} \sqrt{x^{2}+a^{2}}}+C$.
37) $\int \frac{x d x}{\sqrt{x^{2}+a^{2}}}=\sqrt{x^{2}+a^{2}}+C$.
38) $\int \frac{x^{2} d x}{\sqrt{x^{2}+a^{2}}}=\frac{x}{2} \sqrt{x^{2}+a^{2}}-\frac{a^{2}}{2} \ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C$.
39) $\int \frac{x^{2} d x}{\sqrt{\left(x^{2}+a^{2}\right)^{3}}}=-\frac{x}{\sqrt{x^{2}+a^{2}}}+\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C$.
40) $\int \frac{d x}{x \sqrt{x^{2}+a^{2}}}=\frac{1}{a} \ln \frac{x}{a+\sqrt{x^{2}+a^{2}}}+C$.
41) $\int \frac{d x}{x^{2} \sqrt{x^{2}+a^{2}}}=-\frac{\sqrt{x^{2}+a^{2}}}{a^{2} x}+C$.
42) $\int \frac{d x}{x^{3} \sqrt{x^{2}+a^{2}}}=-\frac{\sqrt{x^{2}+a^{2}}}{2 a^{2} x^{2}}+\frac{1}{2 a^{3}} \ln \frac{a+\sqrt{x^{2}+a^{2}}}{x}+C$.
43) $\int \frac{\sqrt{x^{2}+a^{2}} d x}{x}=\sqrt{\overline{x^{2}+a^{2}}}-a \ln \frac{a+\sqrt{x^{2}+a^{2}}}{x}+C$.
44) $\int \frac{\sqrt{x^{2}+a^{2}} d x}{x^{2}}=-\frac{\sqrt{x^{2}+a^{2}}}{x}+\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C$.

$$
0 \text { - } 0 \text { الدوال القى تحتوى على }{ }^{2}-x^{2}
$$

45) $\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C$.
46) $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a}+C$.
47) $\int \frac{d x}{\sqrt{\left(a^{2}-x^{2}\right)^{3}}}=\frac{x}{a^{2} \sqrt{a^{2}-x^{2}}}+C$.
48) $\int \frac{x d x}{\sqrt{a^{2}-x^{2}}}=-\sqrt{a^{2}-x^{2}}+C$.
49) $\int \frac{x d x}{\sqrt{\left(a^{2}-x^{2}\right)^{3}}}=\frac{1}{\sqrt{a^{2}-x^{2}}}+C$
50) $\int \frac{x^{2} d x}{\sqrt{a^{2}-x^{2}}}=-\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \arcsin \frac{x}{a}+C$.
51) $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \arcsin \frac{x}{a}+C$.
52) $\int \sqrt{\left(a^{2}-x^{2}\right)^{3}} d x=\frac{x}{8}\left(5 a^{2}-2 x^{2}\right) \sqrt{a^{2}-x^{2}}+$ $+\frac{3 a^{4}}{8} \arcsin \frac{x}{a}+C$.
53) $\int x \sqrt{a^{2}-x^{2}} d x=-\frac{\sqrt{\left(a^{2}-x^{2}\right)^{3}}}{3}+C$.
54) $\int x \sqrt{\left(a^{2}-x^{2}\right)^{3}} d x=-\frac{\sqrt{\left(a^{2}-x^{2}\right)^{5}}}{5}+C$.
55) $\int x^{2} \sqrt{a^{2}-x^{2}} d x=\frac{x}{8}\left(2 x^{2}-a^{2}\right) \sqrt{a^{2}-x^{2}}+$ $+\frac{a^{4}}{8} \arcsin \frac{x}{a}+C$.
56) $\int \frac{x^{2} d x}{\sqrt{\left(a^{2}-x^{2}\right)^{3}}}=\frac{x}{\sqrt{a^{2}-x^{2}}}-\arcsin \frac{x}{a}+C$
57) $\int \frac{d x}{x \sqrt{a^{2}-x^{2}}}=\frac{1}{a} \ln \frac{x}{a+\sqrt{a^{2}-x^{2}}}+C$.
58) $\int \frac{d x}{x^{2} \sqrt{a^{2}-x^{2}}}=-\frac{\sqrt{a^{2}-x^{2}}}{a^{2} x}+C$.
59) $\int \frac{d x}{x^{3} \sqrt{a^{2}-x^{2}}}=-\frac{\sqrt{a^{2}-x^{2}}}{2 a^{2} x^{2}}+\frac{1}{2 a^{3}} \ln \frac{x}{a+\sqrt{a^{2}-x^{2}}}+C$.
60) $\int \frac{\sqrt{a^{2}-x^{2}}}{x} d x=\sqrt{a^{2}-x^{2}}-a \ln \frac{a+\sqrt{a^{2}-x^{2}}}{x}+C$.
61) $\int \frac{\sqrt{a^{2}-x^{2}}}{x^{2}} d x=\frac{\sqrt{a^{2}-x^{2}}}{x}-\arcsin \frac{x}{a}+C$.
$\sqrt{x^{2}-a^{2}}$ - 9
62) $\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C$.
63) $\int \frac{d x}{\sqrt{\left(x^{2}-a^{2}\right)^{3}}}=-\frac{x}{a^{2} \sqrt{x^{2}-a^{2}}}+C$.
64) $\int \frac{x d x}{\sqrt{x^{2}-a^{2}}}=\sqrt{x^{2}-a^{2}}+C$.
65) $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C$.
66) $\int \sqrt{\left(x^{2}-a^{2}\right)^{3}} d x=\frac{x}{8}\left(2 x^{2}-5 a^{2}\right) \sqrt{x^{2}-a^{2}}+$
$+\frac{3 a^{4}}{8} \ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C$.
67) $\int x \sqrt{x^{2}-a^{2}} d x=\frac{\sqrt{\left(x^{2}-a^{2}\right)^{3}}}{3}+C$.
68) $\int x \sqrt{\left(x^{2}-a^{2}\right)^{3}} d x=\frac{\sqrt{\left(x^{2}-a^{2}\right)^{5}}}{5}+C$.
69) $\int x^{2} \sqrt{x^{2}-a^{2}} d x=\frac{x}{8}\left(2 x^{2}-a^{2}\right) \sqrt{x^{2}-a^{2}}-$
$-\frac{a^{4}}{8} \ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C$.
70) $\int \frac{x^{2} d x}{\sqrt{x^{2}-a^{2}}}=\frac{x}{2} \sqrt{x^{2}-a^{2}}+\frac{a^{2}}{2} \ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C$.
71) $\int \frac{x^{2} d x}{\sqrt{\left(x^{2}-a^{2}\right)^{3}}}=-\frac{x}{\sqrt{x^{2}-a^{2}}}+\ln \left(x+\sqrt{\left.x^{2}-a^{2}\right)}+C\right.$.
72) $\int \frac{d x}{x \sqrt{x^{2}-1}}=\operatorname{arcsec} x+C$.
73) $\int \frac{d x}{x \sqrt{x^{2}-a^{2}}}=\frac{1}{a} \operatorname{arcsec} \frac{x}{a}+C$.
74) $\int \frac{d x}{x^{2} \sqrt{x^{2}-a^{2}}}=\frac{\sqrt{x^{2}-a^{2}}}{a^{2} x}+C$.
75) $\int \frac{d x}{x^{3} \sqrt{x^{2}-a^{2}}}=\frac{\sqrt{x^{2}-a^{2}}}{2 a^{2} x^{2}}+\frac{1}{2 a^{3}} \operatorname{arcsec} \frac{x}{a}+C$.
76) $\int \frac{\sqrt{x^{2}-a^{2}} d x}{x}=\sqrt{x^{2}-a^{2}}-a \arccos \frac{a}{x}+C$.
77) $\int \frac{\sqrt{x^{2}-a^{2}} d x}{x^{2}}=-\frac{\sqrt{x^{2}-a^{2}}}{x}+\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C$.
$\sqrt{2 a x-x^{2}}, \sqrt{2 a x+x^{2}}$ الدوال التى تحتوى على - V
 الصورة اللt تعريله إلا صورة موبودة ن المدرل .
 انمبارة الموجودة كَن المبنر إلى الصورة

$$
1
$$

79) $\int \frac{d x}{\sqrt{a+b x+c x^{2}}}=\frac{1}{\sqrt{ }{ }_{c}} \ln \left(2 a x+b+2 \sqrt{c} \sqrt{a+b x+c x^{2}}\right)+C$.
80) $\int \sqrt{a+b x+c x^{2}} d x=\frac{2 c x+b}{4 c} \sqrt{a+b x+c x^{2}}-$
$-\frac{b^{2}-4 a c}{8 \sqrt{c^{3}}} \ln \left(2 a x+b+2 \sqrt{c} \sqrt{a+b x+c x^{2}}\right)+C$.
81) $\int \frac{x d x}{\sqrt{a+b x+c x^{2}}}=\frac{\sqrt{a+b x+c x^{2}}}{c}-$
$-\frac{b}{2 \sqrt{c^{3}}} \ln \left(2 c x+b+2 \sqrt{c} \sqrt{a+b x+c x^{2}}\right)+C$.

9- 9 - الدوال القى تكتوى على $a+b x-c x^{2}(c>0)$
82) $\int \frac{d x}{a+b x-c x^{2}}=\frac{1}{\sqrt{b^{2}+4 a c}} \ln \frac{\sqrt{b^{2}+4 a c}+2 c x-b}{\sqrt{b^{2}+4 a c}-2 c x+b}+C$.
83) $\int \frac{d x}{\sqrt{a+b x-c x^{2}}}=\frac{1}{\sqrt{c}} \arcsin \frac{2 c x-b}{\sqrt{b^{2}+4 a c}}+C$.
84) $\int \sqrt{a+b x-c x^{2}} d x=\frac{2 c x-b}{4 c} \sqrt{a+b x-c x^{2}}+$ $+\frac{b^{2}+4 a c}{8 \sqrt{c^{3}}} \arcsin \frac{2 c x-b}{\sqrt{b^{2}+4 a c}}+C$.
85) $\int \frac{x d x}{\sqrt{a+b x-c x^{2}}}=-\frac{\sqrt{a+b x-c x^{2}}}{c}+$
$+\frac{b}{2 \sqrt{c^{3}}} \arcsin \frac{2 c x-b}{\sqrt{b^{2}+4 a c}}+C$.
-
86) $\int \sqrt{\frac{a+x}{b+x}} d x=\sqrt{(a+x)(b+x)}+(a-b) \ln (\sqrt{a+x}+$ $+\sqrt{b+x}+C$.
87) $\int \sqrt{\frac{a-x}{b+x}} d x=\sqrt{(a-x)(b+x)}+(a+b) \arcsin \sqrt{\frac{x+b}{a+b}}+C$.
88) $\int \sqrt{\frac{a+x}{b-x}} d x=-\sqrt{(a+x)(b-x)}-(a+b) \arcsin \sqrt{\frac{b-x}{a+b}}+C$.
89) $\int \sqrt{\frac{1+x}{1-x}} d x=-\sqrt{1-x^{2}}+\arcsin x+C$.
90) $\int \frac{d x}{\sqrt{(x-a)(b-x)}}=2 \arcsin \sqrt{\frac{x-a}{b-a}}+C$.

- اللدوال الأسية والمثلثية

91) $\int a^{x} d x=\frac{a^{x}}{\ln a}+C$.
92) $\int e^{x} d x=e^{x}+C$.
93) $\int e^{a x} d x=\frac{e^{a x}}{a}+C$.
94) $\int \sin x d x=-\cos x+C$.
95) $\int \cos x d x=\sin x+C$.
96) $\int \tan x d x=-\ln \cos x+C$.
97) $\int \cot x d x=\ln \sin x+C$.
98) $\int \sec x d x=\ln (\sec x+\tan x)+C=\ln \tan \left(\frac{\pi}{4}+\frac{x}{2}\right)+C$.
99) $\int \operatorname{cosec} x d x=\ln (\operatorname{cosec} x-\cot x)+C=\ln \tan \frac{x}{2}+C$.
100) $\int \sec ^{2} x d x=\tan x+C$.
101) $\int \operatorname{cosec}^{2} x d x=-\cot x+C$.
102) $\int \sec x \tan x d x=\sec x+C$.
103) $\int \operatorname{cosec} x \cot x d x=-\operatorname{cosec} x+C$.
104) $\int \sin ^{2} x d x=\frac{x}{2}-\frac{1}{4} \sin 2 x+C$.
105) $\int \cos ^{2} x d x=\frac{x}{2}+\frac{1}{4} \sin 2 x+C$.
106) $\int \sin ^{n} x d x=-\frac{\sin ^{n-1} x \cos x}{n}+\frac{n-1}{n} \int \sin ^{n-2} x d x$.
 زوجية أم زردية) ، وعدئن نجد هلين التكاملين ونقاَ لرقمين 104 و 94 .
107) $\int \cos ^{n} x d x=\frac{\cos ^{n-1} x \sin x}{n}+\frac{n-1}{n} \int \cos ^{n-2} x d x$
(انظار الملاحظة المتملقة بالتكامل السابق وانظر الرقدين 105 , 95) .
108) $\int \frac{d x}{\sin ^{n} x}=-\frac{1}{n-1} \times \frac{\cos x}{\sin ^{n-1} x}+\frac{n-2}{n-1} \int \frac{d x}{\sin ^{n-2} x}$.
 . 99 هنده $\int \frac{d x}{\sin x}$
109) $\int \frac{d x}{\cos ^{n} x}=\frac{1}{n-1} \frac{\sin x}{\cos ^{n-1} x}+\frac{n-2}{n-1} \int \frac{d x}{\cos ^{n-2} x}$
(انشار الما حطة المتعاعة بالتكامل الـهابت وانظر الرقم 98) .
110) $\int \sin x \cos ^{n} x d x=-\frac{\cos ^{n+1} x}{n+1}+C$.
111) $\int \sin ^{n} x \cos x d x=\frac{\sin ^{n+1} x}{n+1}+C$.
112) $\int \cos ^{m} x \sin ^{n} x d x=\frac{\cos ^{m-1} x \sin ^{n+1} x}{m+n}+\frac{m-1}{m+n} \int \cos ^{m-2} x \sin ^{n} x d x$.

113) $\int \cos ^{m} x \sin ^{n} x d x=-\frac{\sin ^{n-1} x \cos ^{m+1} x}{m+n}+\frac{n-1}{m+n} \int \cos ^{m} x \sin ^{n-2} x d x$
(انطّر المالاحظت المتعلقَ بالتكامل السابق وانظر الرقين 107 و 110) .
114) $\int \sin m x \sin n x d x=-\frac{\sin (m+n) x}{2(m+n)}+\frac{\sin (m-n) x}{2(m-n)}+C$.
115) $\left.\int \cos m x \cos n x d x=\frac{\sin (m+n) x}{2(m+n)}+\frac{\sin (m-n) x}{2(m-n)}+C.\right\}(m \neq n)$
116) $\int \sin m x \cos n x d x=-\frac{\cos (m+n) x}{2(m+n)}-\frac{\cos (m-n) x}{2(m-n)}+C(m \neq n)$.
117) $\int \frac{d x}{a+b \cos x}=\frac{2}{\sqrt{a^{2}-b^{2}}} \arctan \left(\sqrt{\frac{a-b}{a+b}} \tan \frac{x}{2}\right)+C$,
. $a>b$ عند. تكون
118) $\int \frac{d x}{a+b \cos x}=\frac{1}{\sqrt{b^{2}-a^{2}}} \ln \frac{\sqrt{b-a} \tan \frac{x}{2}+\sqrt{b+a}}{\sqrt{b-a} \tan \frac{x}{2}-\sqrt{b+a}}+C$,
119) $\int \frac{d x}{a+b \sin x}=\frac{2}{\sqrt{a^{2}-b^{2}}} \arctan \frac{a \tan \frac{x}{2}+b}{\sqrt{a^{2}-b^{2}}}+C$,

مندما نكون b > a .
e
120) $\int \frac{d x}{a+b \sin x}=\frac{1}{\sqrt{b^{2}-a^{2}}} \ln \frac{a \tan \frac{x}{2}+b-\sqrt{b^{2}-a^{2}}}{a \tan \frac{x}{2}+b+\sqrt{b^{2}-a^{2}}}+C$,

عندما تكون
121) $\int \frac{d x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}=\frac{1}{a b} \arctan \left(\frac{b \tan x}{a}\right)+C$.
122) $\int e^{x} \sin x d x=\frac{e^{x}(\sin x-\cos x)}{2}+C$.
123) $\int e^{a x} \sin n x d x=\frac{e^{a x}(a \sin n x-n \cos n x)}{a^{2}+n^{2}}+C$.
124) $\int e^{x} \cos x d x=\frac{e^{x}(\sin x+\cos x)}{2}+C$.
125) $\int e^{a x} \cos n x d x=\frac{e^{a x}(n \sin n x+a \cos n x)}{a^{2}+n^{2}}$

$$
+C
$$

126)

$\int x e^{a x} d x=\frac{e^{a x}}{a^{2}}(a x-1)+C$.
127) $\int x^{n} e^{a x} d x=\frac{x^{n} e^{a x}}{a}-\frac{n}{a} \int x^{n-1} e^{a x} d x$.

تستخدم هنه الالاةة عدة مرات إلى أن تصنح قوة x مساوية للواحه الصحيح ، عندئذ نجد التكامل ونقاً لارتم 126 .
128) $\int x a^{m x} d x=\frac{x a^{m x}}{m \ln x}-\frac{a^{m x}}{m(\ln a)^{2}}+C$.
129) $\int x^{n} a^{m x} d x=\frac{a^{m x} x^{n}}{n \ln a}-\frac{n}{m \ln a} \int a^{m x} x^{n-1} d x$.

تستخدم هنه اللاذة إل أن تصبح تقة x مساوية للواحد الصـيح ، عندئذ نجد التكامل وفتاً للرتم 125 .
130) $\int e^{a x} \cos ^{n} x d x=\frac{e^{a x} \cos ^{n-1} x(a \cos x+n \sin x)}{a^{2}+n^{2}}+$

$$
+\frac{n(n-1)}{a^{2}+n^{2}} \int e^{a x} \cos ^{n-2} x d x
$$

تستخلم هنه اللاكة إلى أن يختن جيب التام (عندما تكرن n n زوجية) أو إلى آن تصبح قوة جيب التّام مسارية للواهد الصصيح (عندما تكون n فردية) . ون المالة الأخيرة انظر الرقم 125 .
131) $\int \sinh x d x=\cosh x+C$.
132) $\int \cosh x d x=\sinh x+C$.
133) $\int \tanh x d x=\ln \cosh x+C$.
134) $\int \operatorname{coth} x d x=\ln \sinh x+C$.
135) $\int \operatorname{sech} x d x=2 \arctan e^{x}+C$.
136) $\int \operatorname{cosech} x d x=\ln \tanh \frac{x}{2}+C$.
137) $\int \operatorname{sech}^{2} x d x=\tanh x+C$.
138) $\int \operatorname{cosech}^{2} x d x=-\operatorname{coth} x+C$.
139) $\int \operatorname{sech} x \tanh x d x=\operatorname{sech} x+C$.
140) $\int \operatorname{cosech} x \operatorname{coth} x d x=-\operatorname{cosech} x+C$.
141) $\int \sinh ^{2} x d x=-\frac{x}{2}+\frac{1}{4} \sinh 2 x+C$.
142) $\int \cosh ^{2} x d x=\frac{x}{2}+\frac{1}{4} \sinh ^{2} 2 x+C$.

- IF الدوال اللوغار يتمية

نورد آدناه اللوال الىت تحتوى نتط عل لوغاريتم طبيىى . الما اذا كان الململوب إياد تكامل دالة تعتوى عل لوغاريم ذى

$$
\text { أسأس Tانخر ، فإننا نغول أولا إلى لوغاريتم طبيئى حسب اللطاتة } \log _{a} x=\frac{\ln x}{\ln a} \text { نستخدم المدول . }
$$

143) $\int \ln x d x=x \ln x-x+C$.
144) $\int \frac{d x}{x \ln x}=\ln (\ln x)+C$.
145) $\int x^{n} \ln x d x=x^{n+1}\left[\frac{\ln x}{n+1}-\frac{1}{(n+1)^{2}}\right]+C$.
146) $\int \ln ^{n} x d x=x \ln ^{n} x-n \int \ln ^{n-1} x d x$.

147) $x^{m} \int \ln ^{n} x d x=\frac{x^{m+1}}{m+1} \ln ^{n} x-\frac{n}{m+1} \int x^{m} \ln ^{n-1} x d x$.

تستخذدم هذه الماقة إلى أن نحصل على التكامل رقم 145 .

