Sharjah Institute of Technology

معهد الشارقة للتكنولوجيا SHARJAH INSTITUTE OF TECHNOLOGY

DEFINITIONS AND UNITS

	Symbol/Equation:	Units
Mass	m	kg
Acceleration	a	m/s ²
Velocity	v or c	m/s
Temperature	Т	K (Kelvin) $(0^0 \text{ C} = 273 \text{ K})$
Volume	V	m ³
Density	ho = m/V	kg/m ³
Specific heat at constant volume	C _v	kJ/kgK
Specific heat at constant pressure	c _p	kJ/kgK
Specific volume	v = V/m	m ³ /kg
Force = Mass x Acceleration	F = ma	$kg.m/s^2$ (1 kg.m/s ² = 1N)
Pressure = Force / area	P = F / A	Pa (N/m ²) (1bar=10 ⁵ Pa)
Pressure due to liquid column	$P = \rho g z$	N/m ²
Potential Energy	PE = mgz	J/kg or Nm
Kinetic Energy	$KE = \frac{1}{2}mc^2$	J/kg or Nm
Internal Energy	$U = mc_v$	J/kg or Nm
Work = Force x Distance	W = Fs	Nm or J (Joule)
Heat Heat transfer into the system Heat transfer out of the system Increase in internal energy Decrease in internal energy External work done by the system External work done on the system	tem of the gas of the gas gas	J or kcal (kilocalorie) = $+q$ = $-q$ = $+\Delta u$ = $-\Delta u$ = $+w$ = $-w$
Power	P = W/t	Watts

Sharjah Institute of Technology

معهد الشارقة للتكنولوجيا SHARJAH INSTITUTE OF TECHNOLOGY

PROPERTIES OF SOLIDS AND FLUIDS

Viscosity - Viscosity is the property that determines the fluids ability to flow.

Density – the measure of how heavy a substance is.

Specific gravity - the heaviness of a substance compared to that of water. It is expressed without units.

Specific volume – the volume occupied by 1kg of substance

Specific heat capacity – the amount of heat required to raise the temperature of 1kg of substance by 1K

Specific heat at constant volume - The heat energy required to raise the temperature of 1 kg of a gas by 1 K when the process takes place at constant volume.

Specific heat at constant pressure - The heat energy required to raise the temp of 1 kg of a gas by 1 K when the process takes place at constant pressure.

Enthalpy – The combination of the changes in internal energy and pressure and volume (U +Pv)

Entropy – The amount of heat transferred reversibly during a non-flow process

Sharjah Institute of Technology

معهد الشارقة للتكنولوجيا SHARJAH INSTITUTE OF TECHNOLOGY

Second moments of area

FLUID MECHANICS

Pressure	Hydrostatic P	Pressure	2	Gauge pressure		
$\mathbf{P} = \frac{\mathbf{F}}{\mathbf{A}}$	P=ρgz	or	ρgh	$P_g = P_{absolute} - P_{atm}$		

Hydrostatic Force and centre of pressure

$\mathbf{F} = \rho \mathbf{g} \mathbf{x} \mathbf{A}$	$\mathbf{x}_{c} - \mathbf{x} = \frac{\mathbf{I}_{c}}{\mathbf{A}\mathbf{x}}$	$I_{\rm G} = \frac{bd^3}{12}$	$I_{\rm G} = \frac{\pi r^4}{4}$
		(rectangle)	(circle)

Continuity equation	$\dot{\mathbf{m}} = \boldsymbol{\rho}_1 \mathbf{A}_1 \mathbf{v}_1 = \boldsymbol{\rho}_2 \mathbf{A}_2 \mathbf{v}_2$	$\dot{\mathbf{m}} = \boldsymbol{\rho}_1 \mathbf{A}_1 \mathbf{c}_1 = \boldsymbol{\rho}_2 \mathbf{A}_2 \mathbf{c}_2$
	$\dot{\mathbf{V}} = \mathbf{Q} = \mathbf{A}_1 \mathbf{v}_1 = \mathbf{A}_2 \mathbf{v}_2$	$\dot{\mathbf{V}} = \mathbf{Q} = \mathbf{A}_1 \mathbf{c}_1 = \mathbf{A}_2 \mathbf{c}_2$

Steady flow energy equation: q - w = $\Delta e_k + \Delta e_p + \Delta(pv) + \Delta u$.

 $q + (\frac{1}{2}c_1^2 + gz_1 + p_1v_1 + u_1) = w + (\frac{1}{2}c_2^2 + gz_2 + p_2v_2 + u_2)$

Bernoulli's equation: $\frac{p_1}{\rho} + \frac{c_1^2}{2} + z_1 g = \frac{p_2}{\rho} + \frac{c_2^2}{2} + z_2 g$ or $\frac{\mathbf{p}_1}{\rho \mathbf{g}} + \frac{\mathbf{c}_1^2}{2\mathbf{g}} + \mathbf{z}_1 = \frac{p_2}{\rho} + \frac{p_2}{2} + \frac{p_2$

$$\frac{\mathbf{c}_{1}^{2}}{2\mathbf{g}} + \mathbf{z}_{1} = \frac{\mathbf{p}_{2}}{\rho \mathbf{g}} + \frac{\mathbf{c}_{2}^{2}}{2\mathbf{g}} + \mathbf{z}_{2}$$

Momentum (one dimensional flow): $\mathbf{F} = \rho \mathbf{Q}(\mathbf{v}_2 - \mathbf{v}_1) = \mathbf{m}(\mathbf{v}_2 - \mathbf{v}_1)$ Momentum (two dimensional flow): $\mathbf{F} = \sqrt{\mathbf{F}_x^2 - \mathbf{F}_y^2}$ & $\tan \alpha = \frac{\mathbf{F}_y}{\mathbf{F}_x}$

Force on a pipe bend:

$$\begin{split} F_x &= P_1 A_1 - P_2 A_2 cos\theta + \rho Q(v_1 - v_2 cos\theta) \\ F_y &= P_2 A_2 sin\theta + \rho Q v_2 sin\theta \end{split}$$

Force exerted by a jet:

 $\begin{array}{ll} F = \rho A v^2 & \text{or} \\ F = \rho A (v-u)^2 \sin \theta \end{array} \begin{array}{ll} F = \rho A v^2 \sin \theta & (\text{for a fixed surface}) \\ & (\text{for a moving surface}) \end{array}$

Forces on a curved vane:

$$\begin{split} F_x &= \rho A v^2 (\cos \theta - 1) & (Fixed surface) \\ F_y &= \rho A v^2 \sin \theta \\ F_x &= \rho A (v - u)^2 (\cos \theta - 1) & (surface moving away) \\ F_y &= \rho A (v - u)^2 \sin \theta \end{split}$$

Sharjah Institute of Technology

معهد الشارقة للتكنولوجيا SHARJAH INSTITUTE OF TECHNOLOGY

TFERMODYNAMICS

Perfect gases:

Boyle's Law: $PV = constant P_1 V_1 = P_2 V_2$	Charles' Law: $\frac{\mathbf{V}}{\mathbf{T}} = \text{ constant} \qquad \frac{\mathbf{V}_1}{\mathbf{T}_1} = \frac{\mathbf{V}_2}{\mathbf{T}_2}$				
Combined law: $\frac{PV}{T} = \text{constant}$ $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$	1 2				
Characteristic Gas Equation: $pV=mRT$ Joules Law – internal energy change: $\Delta U = m c_v \Delta T$ $= m c_v (T_2 - T_1)$	Gas constant R $R = c_p - c_v$ Enthalpy change $AH = m c_p \Delta T$ $= m c_p (T_2 - T_1)$				
or $\Delta u = c_v \Delta T$ or	$\Delta h = cp \Delta T$				
<i>The non-flow energy equation:</i> $Q - W = \Delta U$ or $Q - W$	$= (U_2 - U_1) \qquad Enthalpy: H = U + pV$				
Work Transfer:					
<i>Constant pressure process:</i> $Q = mc_p \Delta T$					
<i>Work done (constant volume):</i> W = 0 <i>Work do</i>	one (constant pressure): $W = p\Delta V$				
General gas (polytropic) process (PV ⁿ = constant): $W = \frac{P_1V_1 - P_2V_2}{n-1}$ or $\frac{\Delta(PV)}{1-n}$					
Pressure ratio: $\frac{\mathbf{T}_2}{\mathbf{T}_1} = \left(\frac{\mathbf{P}_2}{\mathbf{P}_1}\right)^{\frac{n-1}{n}}$ Volume ratio: $\frac{\mathbf{T}_2}{\mathbf{T}_1} = \left(\frac{\mathbf{v}_2}{\mathbf{v}_1}\right)^{\frac{n-1}{n}}$					
Hyperbolic or isothermal process (PV ⁿ = C where n = 1) $W = P_1 V_1 \ln \left(\frac{V_2}{V_1}\right) \text{ or } W = P_2 V_2 \ln \left(\frac{V_2}{V_1}\right)$					
Reversible adiabatic process (PV $^{\gamma}$ = constant where $\gamma = c_p/c_v$)					

Properties of wet steam:

Dryness fraction x $x = \frac{\text{mass of saturated steam}}{\text{mass of wet steam}}$ The specific volume of wet steam $v = x v_g$ Internal energy of wet steam $u = u_f + x (u_g - u_f)$

The specific enthalpy of wet steam $h = h_f + x h_{fg}$

Sharjah Institute of Technology

معهد الشارقة للتكنولوجيا SHARJAH INSTITUTE OF TECHNOLOGY

MECHANICAL PRINCIPLES FORMULA SHEET

Stress	σ	=	<u>force</u> area		Poisson's ratio μ = <u>lateral strain</u> direct strain				
<i>Modulus</i>	of elasticity	,	E	=	<u>stress</u> strain				
Rigidity m	odulus		G	=	<u>shear s</u> shear s		=	2($\frac{E}{1+\mu}$
Bulk mod			K	=		<u>etric stress</u> etric strain	=	3(<u>Ε</u> 1 - 2μ)
Biaxial st	rains:								
						ection of y,	ε _y =		σ_x)
Areal stra	$in = \varepsilon_A$	=	$\frac{\Delta A}{A}$	=	$\varepsilon_x + \varepsilon_z$	Ży		E	
Triaxial s	trains:	Volun	tetric st	rain	=	$\frac{\Delta V}{V} =$	<u>3σ</u> (1 - Ε	– 2µ)	$= \varepsilon_x + \varepsilon_y + \varepsilon_z$
<i>Thin wall cylinders:</i> Hoop stress $\sigma_h = \underline{pd}_{2t}$ Longitudinal strain $\sigma_L = \underline{pd}_{4t}$									
Thick wall cylinders Circumferential stress $\sigma_c = a + \frac{b}{r^2}$ Radial stress $\sigma_r = a - \frac{b}{r^2}$									
Thick wall cylinders subject to internal pressure only:									
Radial stress $\sigma_{\rm r} = {\rm pr_1}^2 [1 - {\rm r_2}^2/{\rm r}^2]$ Circumferential stress $\sigma_{\rm c} = {\rm pr_1}^2 [1 + {\rm r_2}^2/{\rm r}^2]$ $\overline{{\rm r_2}^2 - {\rm r_1}^2}$ $\overline{{\rm r_2}^2 - {\rm r_1}^2}$									
		r ₂ - r	1					r ₂ -	r ₁
Stress in thin spherical shells $\sigma = \frac{pd}{4t}$									
Epicyclic gear train:									
Operation						Rotation		a	P
1.	Fix orm o	nd rotat	a A har	ono rou		Arm 0	A 1	S t.t	\mathbf{P}
1. 2.	Fix arm a Rotate AI		2			-1	1 -1	-t _A /t _s -1	t_A/t_p
2.	Add 1 a	•	10,010			_1	0	_1_t.	$t = \frac{1}{1+t}/t$

3. Add 1 and 2 -1 0 $-1 - t_A/t_s$ $-1 + t_A/t_p$