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Matrices                                    Handout #8           
 
 

Topic Interpretation 
Matrix Definition 
A matrix is an array of numbers: 
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Matrices are denoted by capital 
letters : A,B,C,….. 
Matrix size or rank is determined 
by the number of rows ×  the 
number of columns it has. 
We say A has m rows and n 
columns or it is an m×n matrix. 
Square Matrix 
A matrix with the same number of 
rows as columns:2×2 , 3×3,4×4 
are all square matrices. 
Identity Matrix  
Has 1 in each of the positions in 
the main diagonal and 0 
elsewhere.  
Note that : I is a Square matrix. 
Matrix Addition 
If  A and B are two matrices of 
the same size then we define A+B 
to be  the matrix whose elements 
are the sums of the corresponding 
elements in A and B. 
Only matrices of the same size 
can be added. 
A + (B + C) = (A+B)+C 
A – B = A + (-B) 
k(A+B) = kA + kB 
Matrix Multiplication 
For the product of two matrices A 
and B to be defined, the number 
of columns of A must be the same 
as the number of rows in B: 
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C = ( )32561 −  is 1 ×  5 

Example2: 
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Example4: 
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A : m×n  ; B : n×p  then AB is  
defined and of rank  m×p 
Properties 
For any matrices A , B , C such 
that all the indicated sums and 
products exist: 
A(BC) = (AB)C  
A(B+C) = AB + BC  
Remark 
In general, AB may not equal 
BA. 
Example5: suppose A is 2x3 
and B is 3x5 then AB is 
defined, but BA is not defined. 
B(3x5) , A(2x3)    
Remark 
For any matrix A such that all 
the indicated products exist: 
IA = AI = A  
Where I is the identity matrix. 
Determinant of a square matrix  
To every square matrix A, 
there is an assigned number 
called the determinant of  A. 
Written det A or |A|. 
Determinant of a 2x2 matrix  
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The product is obtained by multiplying 
each row of  A by the columns of B(first 
by first and so on) 
The first entry: 

(2   3   1) = 2x1+ 3x2 +1x6 = 14  

The second entry: 

(2   3   1) = 2x2+ 3x3 +1x7 = 20  

and so on ……  
 
Example6: 
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Determinant of a 3x3 matrix  

A=   then  
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Inverse Matrix 
A square matrix A has an 
inverse A-1 if  AA-1 = A-1A = I 
Remarks 

51
20

11
40

−
−

+(-4)  

 
|A| = 2(-20 + 2) – 3(0 – 2) -4(0 +4) 
 
|A| = 2(-18) -3(-2) -4(4) 
 
|A| = -36 + 6 – 16 = - 46  
 
 
Example7: 
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1.Only square matrices may 
admit an inverse. 
2.When a square matrix has an  
inverse,it has only one(unique) 
3.A square matrix may have 
no inverse.If |A| = 0 then A-1 

does not exist. 
Inverse of a 2x2 matrix 
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⎠

⎞
⎜⎜
⎝

⎛
dc
ba

A-1 = ⎟⎟
⎠

⎞
⎜
⎝−

−
− ac

b
bcad

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

333231

232221

131211

aaa
aaa
aaa

⎜
⎛ d1

 

Inverse of a 3x3 matrix 

A=  

We define the cofactor of aij  
denoted by Aij  as : 
Aij = (- 1)i+j |Mij| 
We call the determinant |Mij| , 
the minor of aij . 
The above matrix has 9 
cofactors : 
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and so on …… 
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Note the way in which Aij’s 
are placed. 
 
Solving Systems with matrices 
Consider the system: 
ax + by = c  

Note that ,for a 2x2 matrix, the inverse  
is obtained by switching the “diagonal” 
terms a  and  d, changing the sign of the 
“off diagonal” terms b and c and finally 
dividing by the determinant of the 
matrix: ad – bc  
If ad – bc = 0 ,then A-1 does not 
exist. 

A=⎜⎜ ; ad –bc = (1)(4)–(3)(-2)=10  
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The matrix A = ⎜⎜   has no inverse 

since|A| = ad – bc = (2)(3) – (1)(6) = 0 
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Example8:A=       we know
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|A| = -46 from Example6 above. 
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Multiplying each entry by -1/46 . 
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Since                                  

AX = =  

the original system is 
equivalent to the single matrix 
system : AX = B  
A-1 AX = A-1 B   (multiplying 
both sides by A-1) 
IX = A-1 B    ( A-1A = I ) 
  X = A-1 B    ( IX = X ) 
Conclusion  
If  AX = B ⇔  X = A-1B 
That is, AX = B has a solution 
if and only if A-1 exists 
This implies the following: 
A square matrix A is 
invertible(has an inverse) if 
and only if AX = B has a 
unique solution. 
 
Example9:Solve the system : 
x + 1.5y = 8  
2x + 3y = 10  

A=  , since the 

determinant of  A: 
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|A| = (1)(3) – (2)(1.5) = 0 
then A-1  does not exist and 
hence the above system has 
no solution. 
 

Example10: 
 
Solve the system : 
-x -2y + 2z = 9  
2x + y –z = - 3  
3x – 2y + z = -6  
We have AX = B  where  
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Thus the solution is (1, 14, 19) 
 
Example11: Solve the matrix system  
 
X = D + AX  
 
X – AX = D  with X = IX  
IX –AX = D  
(I – A )X = D  
X = (I – A )-1 D  
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Solving A system of three equations with three unknowns 
when they ask for Matrix method ,you can not use Algebra , 
substitution , manipulation etc... 
For example : 
x+y+z = 6 ---------(1) 
2x - y + z = 3 ----- (2) 
x + z = 4 ---------- (3) 
From (1) : z = 6 - x - y  
Substitute for z in (2) and (3) : 
(2): 2x - y + 6 - x - y = 3 implies x - 2y = -3 ----(4) 
(3): x + 6 - x - y = 4 implies y = 2  
putting this in (4) : x - 2(2) = - 3 implies x = 1 
Finally : z = 6 - x - y = 6 - 1 - 2 = 3  
Hence (x,y,z) = (1,2,3) 
 
Instead ,you need to construct the matrix (Read slowly and carefully, 
don’t move to another step before understanding the previous one): 

 

1 1 1 | 6 --------R1 
2 -1 1| 3 --------R2 
1 0 1 | 4 --------R3  
You need to make it(Note the three zeros) : 
1 ? ? | ? 
0 1 ? | ? 
0 0 ? | ?  
The normal procedure is to manipulate this in 3 steps : 
R1 with R2 ; R1 with R3 ; R2 with R3 
Our aim is to: 
1.)Make the first element of the second row (which is 2) a zero (this 
can be done by playing with R1 and R2) 
2.)Make the first element in the third row (which is 1) a zero(this can 
be done by playing with R1 and R3) 
3.)Make the second element of the third row a zero we need to play 
with R2 and R3  
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Step1 : R1 with R2 : 
We do this by multiplying R1 by - 2 and then add it to R2 : 
-2R1 + R2 : 0 - 3 - 1 | - 9  
The Matrix becomes: 
1  1   1 | 6 --------R1 
0 -3  -1|- 9--------R2 
1  0   1 | 4 --------R3  
Note that we only replaced R2 ; R1 is left un tampered. 
Step2 : R1 with R3 : 
to make the first element in the third row ( which is 1 ) , 
it is enough to calculate : 
-R1 + R3 : 0 -1 0 | -2  
The matrix becomes :  
1  1   1 | 6 --------R1 
0 -3 -1 |- 9--------R2 
0 -1  0 | -2 --------R3  
Step3 : R2 with R3  
to make the second element of the third row (which is - 1 )  
a zero  
R2 - 3R3 : 0 0 -1 | - 3  
The Matrix becomes :  
1  1   1  | 6 --------R1 
0 -3  -1 |- 9--------R2 
0 0   -1 | -3 --------R3  
Now the last row means : 
0x + 0y - z = -3 implies z = 3  
Second row : 
0x - 3y - z = - 9 , substitute for z (this is called back-substitution): 
-3y - 3 = - 9 implies y = 2  
First row :  
x + y + z = 6 implies x + 2 + 3 = 6 implies x = 1  
Hence (x,y,z) = (1,2,3) 
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Special cases : 
 
(1) Case of impossible solution : we say the system is inconsistent  
 
This occurs when the last row in the final matrix looks like: 
 
0       0        0  |   N    where N is any number. 
 
In this case 0 X z = N  which is impossible  
 
(2) Case of infinite number of solutions: 
        
     This occurs when the last row in the final matrix looks like: 
 
     0       0        0  |   0 
 
In this case 0 X z = 0   , here z could be any real number , and the 
system has infinite number of solution  
Assume z = t (t any real number) 
e.g.  
 
1   1    1  |  3  
0   1    2  |  0  
0   0    0  |  0  
  
Here  0 X z = 0 , let z = t   
Row2:  y + 2z = 0 implies y = -2z = -2t  
Row1:  x +y + z = 3 implies x -2t + t = 3 , x = t +3  
Hence (x,y,z) = (t+3,-2t,t)  where t is any real number. 
  
 


