For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@mathyards.com</u> Sharj ah Institute of Technology

Bisection Method

Handout #7

Roots – When you have a function of one variable, f(x), the roots of that function are the values of x which make f(x) = 0

The Bisection Method

Description of Method

Step 1: Choose lower, x_i , and upper, x_u , guesses for the root such that the root changes sign over the interval. This can be checked by ensuring that $f(x_i) \cdot f(x_u) < 0$.

Step2: An estimate of the root, x_r, is determined by

$$\mathbf{x}_{\mathrm{r}} = \frac{\mathbf{x}_{\mathrm{1}} + \mathbf{x}_{\mathrm{u}}}{2}$$

Step 3: Make the following evaluations to determine in which subinterval the root lies:

- (a) if $f(x_1) \cdot f(x_r) < 0$, the root lies in the lower subinterval. Therefore, set $x_u = x_r$ and return to step 2.
- (b) if $f(x_l) \cdot f(x_r) > 0$, the root lies in the lower subinterval. Therefore, set $x_l = x_r$ and return to step 2.
- (c) if $f(x_1) \cdot f(x_r) = 0$, the root equals x_r . Terminate the computation.

For comments, corrections, etc...Please contact Ahnaf Abbas: ahnaf@mathyards.com Sharjah Institute of Technology معهد الشارقة للتكنولو SHARJAH INSTITUTE OF TECHNOLOGY Iteration #1 Entered function on given interval with upper and lower guesses and estimated root 0.0004 0.0003 y. 0.0002^{-1} 0.0001 -0.02 0 0.12 0.02 0.04 0.06 0.08 0.1 -0.0001 Х -0.0002--0.0003 Function xI, Lower guess xu, Upper guess xr, Estimated root $x_{\ell} = 0, x_u = 0.11$ $x_m = \frac{0+0.11}{2} = 0.055$ $f(0) = 3.993 \times 10^{-4}$ $f(0.11) = -2.662 \times 10^{-4}$ $f(0.055) = 6.655 \times 10^{-5}$ $x_{\ell} = 0.055$ $x_u = 0.11$

For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@mathyards.com</u> Sharj ah Institute of Technology

