For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@mathyards.com</u> Sharj ah Institute of Technology

معهد الشارقة للتكنولوجيا SHARJAH INSTITUTE OF TECHNOLOGY

Number Systems

values are shown in Table 1.

Handout #2

Торіс	Interpretation			
Instead of using ten unique digits to represent numbers, for binary representations we use only two:	Table 1. Binary and decimal equivalent numbers.			
0 and 1. The word <i>bit</i> is used as		Binary	Decimal	
and thus we will refer to 0 or 1 as		1	1	
bits when we discuss binary		10	2	
		11	3	
Binary Integers		100	4	
To begin, we can consider the process of counting in binary:		101	5	
each time we increment an		110	6	
integer, we add 1 to the least significant bit and if the sum is		111	7	
greater than 1, we increment the		1000	8	
in this manner:		1001	9	
1		1010	10	
10		1011	11	
11 100		1100	12	
101				4
110	Distinguish	ing Bin	ary Numb	ers
1000	One problem is distinguishing between a binary 10 (= 2)and a decimal 10. When the context is not obvious, we suffix any decimal			
1010				
1100	base 10) and	a subscri I any bina	pt 10 (to re ary number	present with a
Thus, the first number represents the decimal integer 1, the second represents the decimal integer 2, and so on. As well as calling these binary numbers, another term used to describe such numbers is to state that they are in <i>base two</i> (or <i>base 2</i>). The corresponding	subscript 2 (to represent base 2). For example, $10_{10} = 1010_2$ and $5632_{10} = 101100000000_2$.		2. For 2 ₁₀ =	

For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@mathyards.com</u> Sharj ah Institute of Technology

معهد الشارقة للتكنولوجيا SHARJAH INSTITUTE OF TECHNOLOGY

2.

1

	Binary Number Representation	Example 1			
	We use two bits, 0 and 1, to represent numbers. An $(n + 1)$ -bit binary integer is a number of the	Add the binary integers 101101 ₂ and 10101 ₂ .			
	form $b_n \cdots b_2 b_1 b_0$ where each b_i is a bit and $b_n = 1$. This represents	+ 10101			
	the number $\sum_{i=0}^{n} b_i 2^i$	1000010 <u>Example 2</u>			
	When a bit $b_i = 1$ is incremented, it is replaced by 0 and the bit b_{i+1} is incremented by 1.	Multiply the binary integers 1011 ₂ and 101 ₂ . 1011 x 101 			
	Conversion from Binary to Decimal	1 carry for sum 1011 0000			
	from the definition, we may mply calculate the sum. For kample, the integer 11010_2 epresents $1 \cdot 16 + 1 \cdot 8 + 0 \cdot 4 +$ $\cdot 2 + 0 \cdot 1 = 16 + 8 + 4 = 28$. the real number 1.011 represents $\cdot 1 + 0 \cdot 0.5 + 1 \cdot 0.25 + 1 \cdot 0.125$ 1 + 0.25 + 0.125 = 1.375.	 + 1011 110111 Note that there cannot be any carries in the multiplication: you either have 0 × 1011 or 1 × 1011, a much simpler rule than that for decimal multiplication. 			
Conversion from Decimal to Binary This is a little more tedious and there is nothing insightful to be gained from memorizing such an algorithm. If it is a decimal integer, keep dividing by 2 and keep track the remainders. If it is a real number <i>x</i> , find the largest power <i>n</i> of 2 such that $2^{-n}x < 1$ and keep track of whether, by multiplying successively by two	Example 3				
	This is a little more tedious and	from binary to decimal.			
	there is nothing insightful to be gained from memorizing such an	This number represents:			
	$1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^{-1}$ $1 + 1 \cdot 2^{-2} + 1 \cdot 2^{-3} + 0 \cdot 2^{-4} + 1 \cdot 2^{-5}$ which equals				
	16 + 2 + 1 + 0.25 + 0.125 + 0.03125 = 19. 40625.				
	0 or 1 and discarding the integer part with each step				