For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@mathyards.com</u> Sharj ah Institute of Technology

Factor and Remainder Theorems Tutoring Sheet #2 – Solution

1. Find the remainder of division in each of the following

a.
$$x^{3} - 3x + 7$$
 by $x - 3$
 $R = f(3) = 3^{3} - 3(3) + 7 = 25$
b. $x^{3} - 2x^{2} - 9x + 18$ by $x + 3$
 $R = f(-3) = (-3)^{3} - 2(-3)^{2} - 9(-3) + 18 = 0$
Note : $x + 3$ is a factor.
c. $x^{2} + 3$ by $2x - 3$
 $R = f(3/2) = (3/2)^{2} + 3 = 21/4$

2. Find the remainder R by long division and by the remainder theorem: $(2x^4 - 10x^2 + 30x - 60) \div (x + 4)$

Remainder =
$$f(-4) = 2(-4)^4 - 10(-4)^2 + 30(-4) - 60 = 172$$

$$2x^3 - 8x^2 + 22x - 58$$

$$x + 4 \sqrt{2x^4 + 0x^3 - 10x^2 + 30x - 60}$$

$$\frac{2x^4 + 8x^3}{-8x^3 - 10x^2}$$

$$\frac{-8x^3 - 32x^2}{22x^2 + 30x}$$

$$\frac{22x^2 + 88x}{-58x - 60}$$

$$\frac{-58x - 232}{172}$$

For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@mathyards.com</u> Sharj ah Institute of Technology

معهد الشارقة للتكنولوجيا SHARJAH INSTITUTE OF TECHNOLOGY

3. Use the factor theorem to decide if (x - 2) is a factor of

$$f(x) = 2x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 4x + 8.$$

$$f(x) = x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 4x + 8$$

$$f(2) = (2)^{5} - 2(2)^{4} + 3(2)^{3} - 6(2)^{2} - 4(2) + 8 = 0$$
Since $f(2) = 0$ we can conclude that $(x - 2)$ is a feat

Since f(2) = 0, we can conclude that (x - 2) is a factor.

4. Let $f(x) = x^3 - 7x + 6$. Solve the equation f(x) = 0 $f(1) = 1^3 - 7 + 6 = 0 \implies x = 1$ is a root and (x - 1) is a factor.

To find the other factor we divide f(x) by (x - 1)

Quotient = $x^2 + x - 6$ and remainder = 0

So,
$$f(x) = (x - 1)(x + 3)(x - 2)$$
. For $f(x) = 0$, $x = -3$, 1, 2.

For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@mathyards.com</u> Sharj ah Institute of Technology

3. $f(x) = 4x^3 + 3x - 18 = 0$ Possible rational roots are $\pm \frac{1, 2, 3, 6, 9, 18}{1, 2, 4}$ $f(3/2) = 4(3/2)^3 + 3(3/2) - 18 = 27/2 + 9/2 - 18 = 36/2 - 18$ = 18 - 18 = 0therefore $x = \frac{3}{2}$ is a root. So 2x - 3 is a factor.

$$\frac{2x^{2} + 3x + 6}{2x - 3 \sqrt{4x^{3} + 0x^{2} + 3x - 18}} \\
\underline{-(4x^{3} - 6x^{2})} \\
6x^{2} + 3x - 18 \\
\underline{-(6x^{2} - 9x)} \\
12x - 18 \\
\underline{-(12x - 18)} \\
0$$

So $f(x) = 4x^3 + 3x - 18 = (2x - 3)(2x^2 + 3x + 6)$

The quadratic quotient will not factor. Using the quadratic formula we find that the three roots are

$$x = \frac{3}{2}, \quad \frac{-3 \pm i\sqrt{39}}{4}.$$