For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@mathyards.com</u> Sharj ah Institute of Technology

Series

Handout #5

Taula	lustering net et le re
Торіс	Interpretation
	Example1:
Arithmetic	Fourth term = $a+3d$
Sequence(Progression)	15^{th} term = a + 14d
a,a+d,a+2d,a+3d,,a+(n-1)d	$100^{th} term = a + 99d$
n th term : a _n = a + (n-1)d	Example2:
Sum of first n terms:	For the progression: 3,7,11,15,
n	Find the 50 th term.
$S_n = \frac{n}{2}(a+a_n)$	a = 3 ; d = 7 – 3 = 4
Z	$a_{50} = a + 49d = 3 + 49(4) = 199$
$n \left\{ 2\pi + (n-1)d \right\}$	Find the sum of the first 20 terms of
$=\frac{n}{2}\{2a+(n-1)d\}$	the above sequence :
	$S_{20} = (20/2)[2(3) + (20-1)(3)]$
Example 3: Find the sum of the first n odd	= (10)[6+57] = 630
	It is an A.P. of first term a=1 and
positive integers:	common difference $d = 2$
1+3+5+7++	S = (n/2)[2(1) + (n-1)(2)]
Geometric	= (n/2)[2(1) + (1-1)(2)] = $(n/2)[2n] = n^2$
Sequence (<i>Progression</i>)	
$a_{n}a_{n}a_{n}a_{n}a_{n}a_{n}a_{n}a_{n}$	$\frac{\text{Example 4:}}{7^{\text{th}} \text{ term } = ar^6}$
n^{th} term : $a_n = ar^{n-1}$	$40^{\text{th}} \text{ term} = ar^{39}$
Sum of first n terms:	
r^n-1	Example 5:
$S_{n} = a \times \frac{r^{n} - 1}{r - 1}$	For the sequence 3,6,12,
	Find the 10 th term.
Sum to infinity of a G.P.	a = 3, $r = 6/3 = 2$
A geometric sequence is said to	$a_{10} = ar^9 = 3(2)^9$
be infinite when -1 < r < 1	Find the sum of the first 15 terms:
In this case :	$r^{n}-1$ $2^{15}-1$
a	$S_n = a \times \frac{1}{m - 1}$; $S_{15} = 3 \times \frac{1}{2 - 1}$
$S_{\infty} = \frac{a}{1-r}$	$S_{n} = a \times \frac{r^{n} - 1}{r - 1}; S_{15} = 3 \times \frac{2^{15} - 1}{2 - 1}$ S ₁₅ = 3(2 ¹⁵ - 1)
	$S_{15} = 3(2^{-5} - 1)$
Example 6:	
Find the sum to infinity of :	$a = 1$, $r = \frac{1}{2} < 1$
$1+(1/2)+(1/2)^2+(1/2)^3+\dots$	S = a/(1-r) = 1/(1-1/2) = 2