For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@mathyards.com</u> Sharj ah Institute of Technology

معهد الشارقة للتكنولوجيا SHARJAH INSTITUTE OF TECHNOLOGY

Remainder Theorem Handout #2

Торіс	Interpretation
Euclidean division	Example1: dividing 13 by 4 :
When you divide $f(x)$ by $g(x)$,	
you'll obtain the quotient and the	$13 = 4 \times 3 + 1$
remainder of the division.	
$f(x) = divisior \cdot quotient + remainder$	divisor = 4, quotient = 3, remainder=1
$f(x) = d(x) \cdot Q(x) + R(x)$	Example2: The remainder of division of
The Remainder Theorem	$f(x) = x^3 - 3x^2 + x - 5$ by x+1 is
If a number <i>c</i> is substituted for <i>x</i>	$R = f(-1) = (-1)^3 - 3(-1)^2 + (-1) - 5$
in a polynomial $f(x)$, then the	= -1 -3 -1 - 5
result $f(c)$ is the remainder.	= - 10
	The remainder of division of
This means that you can find the	$f(x) = x^3 - 3x^2 + x - 5$ by x - 1 is
remainder of division of any	$R = f(1) = (1)^3 - 3(1)^2 + (1) - 5$
polynomial by polynomials of the	= 1 - 3 + 1 - 5
form x – c without performing the	= - 6
actual division.	Example3:
That would be obtained by	Determine whether 4 is a root of
dividing $f(x)$ by $x - c$.	f(x) = 0, where
	$f(x) = x^3 - 6x^2 + 11x - 6.$
That is, if	We use synthetic division and the remainder theorem to find <i>f</i> (4).
$f(x) = (x - c) \cdot Q(x) + R$, then	4 1 -6 11 -6
$f(c) = (c - c) \cdot Q(x) + R$	4 -8 12
$= 0 \cdot Q(x) + R$	
= R	R = 6
Factor Theorem	Using remainder theorem:
Let f be a polynomial function. Then $x - c$	$f(x) = 4^3 - 6(4)^2 + 11(4) - 6$
is a factor of $f(x)$ if and only if $f(c) = 0$.	= 64 - 96 + 44 - 6
In other words, $x - c$ is a factor of $f(x)$ if	= 6
and only if the remainder is zero.	Since $f(4) \neq 0 \Rightarrow 4$ is not a root of
	f(x)=0

For comments, corrections, etc...Please contact Ahnaf Abbas: <u>ahnaf@mathyards.com</u> Sharj ah Institute of Technology

معهد الشارقة للتكنولوجيا SHARJAH INSTITUTE OF TECHNOLOGY

	SHARJAH INSTITUTE OF TECHNOLOGY
Summary	Example4:
	$f(x) = x^3 - 2x^2 + x - 2.$
f(c) = 0	$f(2) = 2^3 - 2(2)^2 + 2 - 2 = 0$, hence
\Leftrightarrow the remainder of division of	 2 is a root of the equation :
f(x) by (x – c) is 0.	$x^3 - 2x^2 + x - 2 = 0$
\Leftrightarrow c is a root of the equation	 x – 2 is a factor of
f(x) = 0	$f(x) = x^3 - 2x^2 + x - 2$
\Rightarrow x – c is a factor of f(x)	To find the other factor , perform long
Theorem	division of $f(x)$ by $x - 2$ to get
A polynomial function cannot have more	quotient = $x^2 + 1$ and of course
real zeros than its degree.	remainder = 0
Rational Root Theorem	Hence $f(x) = (x - 2)(x^2 + 1)$
	EvempleE
$\int f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_0$	Find the possible rational roots of
, where all the coefficients are integers.	$f(x) = x^3 - 3x - 2$
if f has a rational root, then the possible	possible rational roots are
rational roots are $\pm \frac{factors of a_0}{factors of a_n}$.	±
factors of a_n	$\pm \frac{factors of a_0}{factors of a_n} = \pm \frac{1, 2}{1} = \pm 1, \pm 2$
Steps for Finding the Real	Example6: Find all the roots (or zeros) of
roots of a Polynomial	$f(x) = x^3 - 3x - 2$
1. Use the degree of the polynomial to	Possible rational roots are ± 1 , ± 2 (Example4)
determine the maximum number of	Using the remainder theorem,
zeros.	$f(-1) = 0 \implies x = -1$ is root $\implies x + 1$ is a factor
2. If the polynomial has integer	$f(2) = 0 \implies x = 2$ is root $\implies x - 2$ is a factor
coefficients, use the Rational Root	Choosing to work with $x = -1$ we have
Theorem to identify those rational	x^2 $-x-2$
numbers that potentially could be zeros.	$\frac{x^2 - x - 2}{x + 1 x^3 + 0x^2 - 3x - 2}$
a. Use substitution, synthetic	$-(x^3 + x^2)$
division, or long division to test	
each potential rational zero	$-x^2-3x-2$
b. Each time that a zero (and thus	$-(-x^2-x)$
a factor) is found, repeat Step 2	-2x-2
on the depressed equation.	-(-2x-2)
3. In attempting to find the zeros,	$\frac{-(-2x-2)}{0}$
remember to use (if possible) the factoring techniques that you	So $f(x) = x^3 - 3x - 2 = (x+1)(x^2 - x - 2)$
already know (special products,	
factoring by grouping,	Factoring the quadratic quotient we have, $f(x) = x^3 - 2x - 2 - (x + 1)(x + 1)(x - 2)$
6 7 6 - F6,	$f(x) = x^{3} - 3x - 2 = (x+1)(x+1)(x-2)$
	So the roots are $x = -1, -1$, and 2