معهد الشارقة للتكنولوجيا SHARJAH INSTITUTE OF TECHNOLOGY

IntegrationI

Handout #15

Topic	Interpretation
Anti-Derivative	F(x) is the antiderivative of f or the
F'(x) = f(x)	primitive of f.
Example:	
f(x)=2x is the derivative of	x ² is the antiderivative of 2x
$F(x) = x^{2} \text{ here, } F'(x) = f(x)$	x ² +1 is the antiderivative of 2x
$F(x) = x^2 + 1$; $F'(x) = 2x$	All antiderivatives of a certain function
Indefinite Integral	differ only by a constant. f(x) is the derivative of what function?
Indefinite Integral	T(x) is the derivative of what function:
$\int f(x)dx$	
Example:	Derivative of $x^2 + C$ is $2x$
$\int 2x dx = x^2 + C$	
Basic rules:	
$\int x^k dx = \frac{x^{k+1}}{k+1} + C \qquad ; k \neq 1$	
$\int x \ dx = \frac{1}{k+1} + C \qquad ; \ k \neq 1$	x ⁶
Example: $\int x^5 dx$	$=\frac{x^6}{6}+C$
J	6
1	$= \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + C = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + C = \frac{2x^{\frac{3}{2}}}{3} + C$
$\int \sqrt{x} dx = \int x^{\frac{1}{2}} dx$	$=\frac{1}{1} + C = \frac{1}{3} + C = \frac{1}{2} + C$
	$\frac{1}{2} + 1$ $\frac{3}{2}$ 3
Things to Remember:	
$\int k dx = kx + C$	Examples:
,	$\int 5dx = 5x + C ; \int dx = x + C$
$\int kf(x)dx = k \int f(x)dx$	$\int J dx = J x + U $, $\int dx = X + U$
$\int N_{j}(x)dx - N_{j}f(x)dx$	3
	$\int 4x^2 dx = 4 \int x^2 dx = 4 \frac{x^3}{3} + C$
	3
Definite Integral	
$\int_{a}^{b} f(x)dx = F(b) - F(a)$	$\int_{0}^{1} x^{4} dx = \frac{x^{5}}{5} \left \frac{1}{0} = F(1) - F(0) \right $
	$\int_{0}^{3} u u = \frac{1}{5} \int_{0}^{2} 1(1) = 1(0)$

Example:	x^4dx
----------	---------

$$=\frac{1^5}{5}-\frac{0^5}{5}=\frac{1}{5}$$

Integration by Substitution

Suppose you need to find:

$$\int (2x+1)^2 dx$$

One way to do it is to expand $(2x+1)^2$ So it will turn into something we know based on the above rule:

$$(2x+1)^{2} = 4x^{2} + 4x + 1$$

$$\int (2x+1)^{2} dx = \int (4x^{2} + 4x + 1) dx$$

$$= 4\frac{x^{3}}{3} + 4\frac{x^{2}}{2} + x + C = \frac{4x^{3}}{3} + 2x^{2} + x + C$$

What about : $\int (2x+1)^{12} dx$ It is not practical to expand $(2x+1)^{12}$;

So we use Substitution.

Example: $\int x^3 (\sqrt{x^2 + 1}) dx$ Let $u = x^2 + 1$, then the integral becomes : $\int x^3 \sqrt{u} dx$

We need to change dx into du $u = x^2 + 1 \Rightarrow du = 2x dx$ $\Rightarrow dx = \frac{du}{2x}$ substituting this in

the above integral:

$$\int x^3 \sqrt{u} \, \frac{du}{2x} = \frac{1}{2} \int x^2 \sqrt{u} du$$

Now, we need to get rid of x^2 : $u = x^2 + 1 \Rightarrow x^2 = u - 1$

$$u = x^{2} + 1 \Rightarrow x^{2} = u - \frac{1}{2} \int x^{2} \sqrt{u} du = \frac{1}{2} \int (u - 1) \sqrt{u} du$$
$$= \frac{1}{2} \int u \sqrt{u} du - \frac{1}{2} \int \sqrt{u} du$$
$$= \frac{1}{2} \int u \times u^{\frac{1}{2}} du - \frac{1}{2} \int u^{\frac{1}{2}} du$$

Let u = 2x + 1, then the integral becomes :

$$\int u^{12} dx$$

We need to change dx into du

$$u = 2x + 1 \Rightarrow du = 2 dx$$

$$\Rightarrow$$
 $dx = \frac{du}{2}$ substituting this in the

above integral:

$$\int u^{12} dx = \int u^{12} \frac{du}{2} = \frac{1}{2} \int u^{12} du$$

$$=\frac{1}{2}\frac{u^{13}}{13} + C$$
; With $u = 2x + 1$:

$$= \frac{1}{2} \frac{(2x+1)^{13}}{13} + C = \frac{(2x+1)^{13}}{26} + C$$

$$\frac{1}{2} \int u^{\frac{3}{2}} du - \frac{1}{2} \frac{u^{\frac{3}{2}}}{3/2} + C = \frac{1}{2} \frac{u^{\frac{5}{2}}}{5/2} - \frac{u^{\frac{3}{2}}}{3} + C$$

$$= \frac{u^{\frac{5}{2}}}{5} - \frac{u^{\frac{3}{2}}}{3} + C = \frac{(x^2 + 1)^{\frac{5}{2}}}{5} - \frac{(x^2 + 1)^{\frac{3}{2}}}{3} + C$$