

Basics II: Equations Handout #2

	ations mandout #2
Topic	Interpretation
Linear equations In which all variables are raised to the power of one: Simplest form: ax + b = 0	Example 1: $\frac{x}{4} - 3 = \frac{x}{5} + 1$, a good practice is to get rid of the fractions: Multiplying both sides by 20:
It can be solved by moving the unknown to left side and all other terms to the right side: $ax + b = 0 \Rightarrow ax = -b$	$5x - 60 = 4x + 20 \Rightarrow 5x - 4x = 20 + 60$ \Rightarrow x = 80 \text{Example2}:
⇒ $x = -b/a$, provided $a \ne 0$ (since division by zero is prohibited, Reason : try to divide 5 pencils among zero	3(2x-1) + 5x + 7 = -2x + 43 6x - 3 + 5x + 7 = -2x + 43 $11x + 4 = -2x + 43 \Rightarrow 11x + 2x = 43 - 4$ $13x = 39 \Rightarrow x = 39/3 \Rightarrow x = 3$
students!). General solution: Case1: a≠0 ,	Example3: 7x - 11 + 3x = 10x - 2 10x = 10x - 2 + 11 10x - 10x = 9
b : any real number, unique solution : $x = -b/a$ Case2 : $a = 0$, b : any real number: $0 \times x = b$	0x = 9, impossible, you can't find a number when multiplied by 0 gives you 9 <u>Example4</u>:
Impossible, no solution. Case3 : $a = 0$, $b = 0$: $0 \times x = 0$	$5x = 5x$, $5x - 5x = 0$, $0 \times x = 0$ Any number you put for x will satisfy the equation: $0 \times 2 = 0$, $0 \times -10 = 0$ $0 \times 93 = 0$, 2, -10, 93, are all solutions
Infinite number of solutions	The equation has infinite number of solutions
Absolute Value Equations	Example 5: $ x - 3 = 5$
$ x = a$; $a \ge 0$ (since $ x \ge 0$) $ x = a \Rightarrow x = \pm a$ Remove the absolute value and \pm the answer	$\Rightarrow x - 3 = \pm 5$ Either $x - 3 = -5 \Rightarrow x = -5 + 3 = -2$ OR $x - 3 = 5 \Rightarrow x = 5 + 3 = 8$ Example 6: $ x = -7$; No solution since $ x \ge 0$.
Absolute Value inequalities	Example 7: (1.) $ x < 6 \Rightarrow -6 < x < 6$ (2.) $ x + 2 < 7 \Rightarrow -7 < x + 2 < +7$
$ x < a \Rightarrow -a < x < a$	$\Rightarrow -9 < x < 5$ (3.) $ 2x - 3 > 9 \Rightarrow 2x - 3 < -9$
$ x > a \Rightarrow x < -a ; x > a$	$\Rightarrow 2x < -6 \Rightarrow x < -3$ $2x - 3 > 9 \Rightarrow 2x > 12 \Rightarrow x > 6$

Quadratic Equations

$$ax^{2} + bx + c = 0$$

a,b and c are constants; $a \neq 0$ Can be solved by *factoring* or using the *quadratic formula*:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Case1: $b^2 - 4ac > 0$; Two distinct real roots.

Case2: $b^2 - 4ac = 0$; One double root x = -b/2a

Case3: $b^2 - 4ac < 0$; No real roots.

Higher Equations BiQuadratic Equations

A. $ax^4 + bx^2 + c = 0$ a,b,c are constants; $a \ne 0$ set $y = x^2$ the equation

set $y = x^2$, the equation becomes

 $ay^2 + by + c = 0$ which is a quadratic equation.

Note that $y = x^2 \ge 0$ The solution of the biquad

The solution of the biquadratic equation is x2 instead of x.

B. Equations of degree ≥ 3

Substitute the divisors of the constant term in the equation: f(a) = 0, then x = a is a root of the equation and (x-a) is a factor of f(x), see Example 11

$$x^3 - 4x^2 - 9x + 36 = 0$$

the divisors of 36:
 $\pm 1, \pm 2, \pm 3, \pm 4,...$

x=- 1:

$$(-1)^3-4(-1)^2-9(-1)+36=40$$

-1 is not a root.

Example8:

$$(1.) x^2 - 7x + 6 = 0;$$

by factoring: (x - 1)(x - 6) = 0; x = 1; x = 6By Formula : a = 1 ; b = -7 ; c = 6

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{7 \pm \sqrt{49 - 4(1)(6)}}{2(1)}$$

$$x = \frac{7 \pm \sqrt{25}}{2}$$
; x = 1; x = 6.

(2.)
$$x^2 - 3x + 7 = 0$$
;
a= 1, b = -3, c = 7;

 $b^2 - 4ac = (-3)^2 - 4(1)(7) = 9 - 28 = -19 < 0$

No real roots for this equation.

Example 9:
$$5x^4 - 3x^2 - 2 = 0$$

$$a = 5$$
, $b = -3$, $c = -2$

$$x^{2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{3 \pm \sqrt{9 - 4(5)(-2)}}{2(5)}$$

$$x^2 = \frac{3 \pm \sqrt{49}}{10}$$
; $\mathbf{x^2} = -4/10$ No real

solution(remember $x^2 \ge 0$)

$$X^2 = 1$$
; $x = \pm 1$

Recall: $x^2 = a$; a > 0 then $x = \pm \sqrt{a}$

Remove the square, \pm square root the answer.

Example 10: $x^3 - 4x^2 - 9x + 36 = 0$ You may solve this by factoring by taking them two at a time:

$$x^3 - 4x^2 - 9x + 36 = 0$$

$$x^{2}(x-4) - 9(x-4) = 0$$

$$(x-4)(x^2-9)=0$$

Either
$$x - 4 = 0$$
; $x = 4$

Or
$$x^2 = 9$$
; $x = \pm \sqrt{9}$; $x = \pm 3$

2

x = 1:

$$(1)^3 - 4(1)^2 - 9(1) + 36 = 24$$

x = 1 is not a root.

$$x=4$$
:

$$(4)^3 - 4(4)^2 - 9(2) + 36 = 0$$

$$x = 4$$
 is a root.

Similarly

$$f(-3) = 0$$
; -3 is a root.

$$f(3) = 0$$
; 3 is a root

Square roots Equations

Equations involving square roots can be solved by squaring both sides.

$$\sqrt{x-1} = 3$$
; note that $\mathbf{x} - \mathbf{1} \ge 0$

 \Rightarrow x ≥1 i.e valid solutions should be greater or equal to **1**.

Squaring both sides :

$$x - 1 = 9 \Rightarrow x = 10$$
 accepted being ≥ 1

Simultaneous Equations

Two equations with two unknowns.

$$ax + by = c$$

$$dx + fy = e$$

There are many ways to solve such equations. The easiest two are by substitution and by elimination.

Example11:
$$x^3 - 2x^2 - 5x + 6 = 0$$

The divisors of 6:

$$\pm 1, \pm 2, \pm 3, \pm 6$$

$$f(1) = (1)^3 - 2(1)^2 - 5(1) + 6 = 0;$$

1 is a root.

$$f(-2) = (-2)^3 - 2(-2)^2 - 5(-2) + 6 = 0;$$

-2 is a root.

$$f(3) = (3)^3 - 2(3)^2 - 5(3) + 6 = 0;$$

3 is a root .

The roots are : 1, -2 and 3.
Example 12:
$$\sqrt{2x-1} = 2x-3$$

Valid solutions : $2x - 1 \ge 0$; $x \ge \frac{1}{2}$

Squaring both sides:

$$2x - 1 = (2x - 3)^2$$

$$2x - 1 = 4x^2 - 12x + 9$$

$$4x^2 - 14x + 10 = 0$$

Solving by factoring or by the quadratic formula:

x = 1 accepted being ≥ 0.5

x = 10/4 = 2.5 accepted being ≥ 0.5

Example13: x + 3y = 11 - (1)5x - 2y = 4 - (2)

From (1), x = 11 - 3y substitute this in

$$(2):5(11-3y)-2y=4$$

⇒
$$55 - 15y - 2y = 4$$
 ⇒ $-17y = -51$ **y** = **3**.

Now
$$x = 11 - 3y = 11 - 3(3) = 2$$
 $(x,y) = (2,3)$

Checking: substitute the values of x and

3

By Substitution

Find x in terms of y in any of the equations and substitute it in the other equation.

Substitution is good when you have the coefficient of at least one of the unknowns is 1. e.g.

x + 7y = 10; it is easy to set x = 10 - 7y;

while in 31x - 17y = 103, you will face

x = (103 + 17y)/31,

in this case use elimination for less trouble with arithmetic.

(See Example 13)

By Elimination

Is the process where you get rid of one of the unknowns. If it is possible to make the x has same coefficient in both equations, then by subtraction, you will be able to get rid of x.

We do so by multiplying each equation with the coefficient of x in the other equation(see Example14)

By Graphing

$$ax + by = c$$

$$dx + fy = e$$

represent two equations of two straight lines, plot the two straight lines.

the point of intersection of these straight lines represents the solution of the system. y in any of the equations, if these values satisfy the equation, then your solution is correct:

$$x + 3y = 11$$

$$2 + 3(3) = 11.$$

Example 14:
$$5x - 3y = -6$$
 -----(1)

$$3x + 7y = 14 - - - (2)$$

Multiply (1) by
$$3:15x-9y=-18$$

Multiply (2) by
$$5: 15x + 35y = 70$$

Subtracting :
$$-9y - 35y = -18 - 70$$

$$-44y = -88$$
; **y = 2**

Now substitute this in any of the

equations:
$$5x - 3y = -6$$

$$5x - 3(2) = -6$$

$$5x - 6 = -6$$

$$5x = 0$$
; $x = 0/5 = 0$

$$(x,y) = (0, 2)$$

Example 15:
$$-2x + y = -3$$
 -----(1)

$$-x + y = 1$$
 ----(2)

$$x = 4, \quad y = 5$$

