Dr. Z's Math251 Handout \#15.4 [Double Integrals in Polar Coordinates]

By Doron Zeilberger

Problem Type 15.4a: Evaluate the integral

$$
\iint_{D} F(x, y) d A
$$

where D is a region best described in polar coordinates,

$$
D=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\} .
$$

Example Problem 15.4a: Evaluate the integral

$$
\iint_{D} e^{-x^{2}-y^{2}} d A
$$

where D is the region bounded by the semi-circle $x=\sqrt{25-y^{2}}$ and the y-axis.

Steps

1. Draw the region and express it, if possible and convenient, as

$$
D=
$$

$\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}$.
Of course, in many problems, the $h_{1}(\theta)$ and/or $h_{2}(\theta)$ may be plain numbers (i.e. not involve θ).

Example

1. This is a semi-circle, i.e. half a circle, center origin, radius 5 , and since it is bounded by the y-axis, and $x \geq 0$, it is the right half
[Had it been $x=-\sqrt{25-y^{2}}$ it would have been the left-half. Had it been $y=$ $\sqrt{25-x^{2}}$ it would have been the upperhalf. Had it been $y=-\sqrt{25-x^{2}}$ it would have been the lower-half.]

Since it is the right-half, θ ranges from $\theta=-\pi / 2$ (the downwards direction) to $\theta=\pi / 2$ (the upwards direction). For each ray $\theta=\theta_{0}, r$, the distance from the origin, ranges from $r=0$ to $r=5$ (and indeed does not depend on θ in this problem). So our region phrased in polar coordinates is:
$D=\{(r, \theta) \mid-\pi / 2 \leq \theta \leq \pi / 2,0 \leq r \leq 5\}$.
2. Rewrite the area integral

$$
\iint_{D} F(x, y) d A
$$

in polar coordinates by replacing
x by $r \cos \theta, y$ by $r \sin \theta, d A$ by $r d r d \theta$.
[shortcut: Whenever you see $x^{2}+y^{2}$ you can replace it by r^{2}.]

Write it as an iterated integral
$\iint_{D} F(x, y) d A=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} F(r \cos \theta, r \sin \theta) r d r d \theta$,
with the θ-integral being at the outside and the r-integral being in the inside.
3. Evaluate this iterated integral by first doing the inner-integral (possibly getting an expression in θ, or just a number), and then the outer integral.
3. The inside integral is (do the change-of-variable $u=-r^{2}$):
$\int_{0}^{5} e^{-r^{2}} r d r=\left.(-1 / 2) e^{-r^{2}}\right|_{0} ^{5}=\left(1-e^{-25}\right) / 2$,
and the whole double-integral is

$$
\begin{gathered}
\int_{-\pi / 2}^{\pi / 2} \int_{0}^{5} e^{-r^{2}} r d r d \theta \\
=\int_{-\pi / 2}^{\pi / 2}\left[\int_{0}^{5} e^{-r^{2}} r d r\right] d \theta \\
=\int_{-\pi / 2}^{\pi / 2}\left[\left(1-e^{-25}\right) / 2\right] d \theta=\left(1-e^{-25}\right) / 2 \int_{-\pi / 2}^{\pi / 2} d \theta= \\
{\left[\left(1-e^{-25}\right) / 2\right][\pi / 2-(-\pi / 2)]=\pi\left(1-e^{-25}\right) / 2 .}
\end{gathered}
$$

Ans.: $\pi\left(1-e^{-25}\right) / 2$.

Problem Type 15.4b: Find the volume of the solid above the surface $z=f(x, y)$ and below the surface $z=g(x, y)$.

Example Problem 15.4b: Find the volume of the solid above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=2$.

Steps

1. Find the "floor", let's call it D, by setting $f(x, y)=g(x, y)$ (or if convenient already convert to polar coordinates).

Example

1. In polar coordinates, the two surfaces are $z=r$ and $z=\sqrt{2-r^{2}}$. Setting them equal gives $r=\sqrt{2-r^{2}}$. Squaring both sides gives $r^{2}=2-r^{2}$, which gives $2 r^{2}=2$, which gives $r^{2}=1$ and so $r= \pm 1$. But r is never negative, so $r=-1$ is nonsense. Hence the "floor", D, is the region bounded by the circle $r=1$, or, if you wish, the disk $r \leq 1$.

So

$$
D=\{(r, \theta) \mid 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi\} .
$$

2. The volume is the area integral of TOP-BOTTOM

$$
\iint_{D}[f(x, y)-g(x, y)] d A
$$

2. The bottom is $z=\sqrt{x^{2}+y^{2}}$, and in polar $z=r$, and the top is $x^{2}+y^{2}+$ $z^{2}=2$ which is $z=\sqrt{2-x^{2}-y^{2}}$ and in polar $z=\sqrt{2-r^{2}}$. So the volume in polar coordinates is

Set it up. Then convert it to polar-coordinates.

$$
\int_{0}^{2 \pi} \int_{0}^{1}\left[\sqrt{2-r^{2}}-r\right] r d r d \theta
$$

3. Evaluate the iterated integral. First do the inner integral (w.r.t. to r) getting an expression in θ (or just a number), and then do the outer integral.
4. The inner integral is

$$
\begin{gathered}
\int_{0}^{1}\left[\sqrt{2-r^{2}}-r\right] r d r=\int_{0}^{1}\left[r \sqrt{2-r^{2}}-r^{2}\right] d r \\
\quad=\int_{0}^{1} r\left(2-r^{2}\right)^{1 / 2} d r-\int_{0}^{1} r^{2} d r \\
\quad=-\left.(1 / 3)\left(2-r^{2}\right)^{3 / 2}\right|_{0} ^{1}-r^{3} /\left.3\right|_{0} ^{1} \\
\quad=-\left.(1 / 3)\left(2-r^{2}\right)^{3 / 2}\right|_{0} ^{1}-r^{3} /\left.3\right|_{0} ^{1} \\
=-(1 / 3)\left[\left(2-1^{2}\right)^{3 / 2}-\left(2-0^{2}\right)^{3 / 2}\right]-1 / 3 \\
\quad=\left[2^{3 / 2}-2\right] / 3=(2 \sqrt{2}-1) / 3 .
\end{gathered}
$$

The whole integral is thus:

$$
\begin{gathered}
\int_{0}^{2 \pi} \int_{0}^{1}\left[\sqrt{2-r^{2}}-r\right] r d r d \theta \\
=\int_{0}^{2 \pi}\left[\int_{0}^{1}\left[\sqrt{2-r^{2}}-r\right] r d r\right] d \theta \\
=\int_{0}^{2 \pi}(2 \sqrt{2}-1) / 3 d \theta \\
=2 \pi(2 \sqrt{2}-1) / 3
\end{gathered}
$$

Ans.: The volume is $2 \pi(2 \sqrt{2}-1) / 3$.
Problem Type 15.4c: Evaluate the iterated integral by converting to polar coordinates.

$$
\int_{a}^{b} \int_{f_{1}(y)}^{f_{2}(y)} F(x, y) d x d y
$$

Example Problem 15.4c: Evaluate the iterated integral by converting to polar coordinates.

$$
\int_{0}^{3} \int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}} x^{2} y d x d y
$$

Steps

Example

1. By looking at the limits of integration of the outer and inner integral signs, figure out the region D.
$D=\left\{(x, y) \mid a \leq y \leq b, f_{1}(y) \leq x \leq f_{2}(y)\right\}$

Draw this region, and express it in polar coordinates
$D=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, g_{1}(\theta) \leq r \leq g_{2}(\theta)\right\}$
2. Write the iterated integral as an area integral, then convert it to an iterated integral in polar coordinates. Use the "disctionary" $x=r \cos \theta y=r \sin \theta d x d y=$ $r d r d \theta$.

1. Our region is:
$D=\left\{(x, y) \mid 0 \leq y \leq 3,-\sqrt{9-y^{2}} \leq x \leq \sqrt{9-y^{2}}\right\}$.

Drawing it (do it!), we see that this is the upper-half of the circle whose center is the origin and whose radius is 3 . In polar coordiantes it is:

$$
D=\{(r, \theta) \mid 0 \leq \theta \leq \pi, 0 \leq r \leq 3\}
$$

2.

$$
\begin{aligned}
& \int_{0}^{3} \int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}} x^{2} y d x d y \\
= & \int_{0}^{\pi} \int_{0}^{3}(r \cos \theta)^{2}(r \sin \theta) r d r d \theta \\
= & \int_{0}^{\pi} \int_{0}^{3} r^{4} \sin \theta \cos ^{2} \theta d r d \theta
\end{aligned}
$$

3. Evaluate that iterated integral by doing the inner integral first, and then the outer integral.
4. The inner integral is

$$
\begin{gathered}
\int_{0}^{3} r^{4} \sin \theta \cos ^{2} \theta d r=\sin \theta \cos ^{2} \theta \int_{0}^{3} r^{4} d r \\
=\sin \theta \cos ^{2} \theta\left[\left.\frac{r^{5}}{5}\right|_{0} ^{3}\right] \\
=\frac{243}{5} \sin \theta \cos ^{2} \theta .
\end{gathered}
$$

The outer integral is:

$$
\begin{gathered}
\quad \int_{0}^{\pi} \int_{0}^{3} r^{4} \sin \theta \cos ^{2} \theta d r d \theta \\
=\int_{0}^{\pi}\left[\int_{0}^{3} r^{4} \sin \theta \cos ^{2} \theta d r\right] d \theta \\
=\int_{0}^{\pi} \frac{243}{5} \cos ^{2} \theta \sin \theta d \theta=\frac{243}{5} \int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta \\
=\frac{243}{5} \cdot\left[\left.\frac{-\cos ^{3} \theta}{3}\right|_{0} ^{\pi}\right]=\frac{81}{5} \cdot\left(-\cos ^{3}(\pi)--\cos ^{3}(0)\right)=\frac{162}{5}
\end{gathered}
$$

Ans.: $\frac{162}{5}$.

